
DOI: 10.1007/s10955-004-2138-2
Journal of Statistical Physics, Vol. 118, Nos. 5/6, March 2005 (© 2005)

On the Ising Model with Random Boundary Condition
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Received August 12, 2004; accepted November 8, 2004

The infinite-volume limit behavior of the 2d Ising model under possibly strong
random boundary conditions is studied. The model exhibits chaotic size-depen-
dence at low temperatures and we prove that the ‘+’ and ‘−’ phases are the
only almost sure limit Gibbs measures, assuming that the limit is taken along
a sparse enough sequence of squares. In particular, we provide an argument to
show that in a sufficiently large volume a typical spin configuration under a
typical boundary condition contains no interfaces. In order to exclude mixtures
as possible limit points, a detailed multi-scale contour analysis is performed.

KEY WORDS: Random boundary conditions; metastates; contour models;
multi-scale analysis; local limit theorems.

1. INTRODUCTION

A fundamental problem in equilibrium statistical mechanics is to deter-
mine the set of physically accessible thermodynamic states for models
defined via a family of local interactions. Usually(15,23) one interprets the
extremal elements of the set of translationally invariant Gibbs measures
as the pure thermodynamic phases of the model. In particular this means
that one gathers all periodic or quasiperiodic extremal Gibbs measures
into symmetry-equivalent classes and identifies the latter with the pure
phases. Examples are the ferromagnetic, the antiferromagnetic, crystalline
or quasicrystalline phases exhibited by various models. In this approach
one does not consider either interface states or mixtures as pure phases.
The mixtures allow for a unique decomposition into the extremal measures
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and are traditionally interpreted in terms of a lack of the knowledge about
the thermodynamic state of the system. They can also be classified as less
stable than the extremal measures.(25,36) It is thought that interface states
which are extremal Gibbs measures are more stable than mixed states, but
less so than pure phases. However, such an “intrinsic” characterization has
not been developed. Note, moreover, that in disordered systems such as
spin glasses, the stability of pure phases is a priori not clear and charac-
terizing them remains an open question.

An efficient strategy for models with a simple enough structure of
low-temperature phases is to associate these with suitable coherent bound-
ary conditions. The latter are usually chosen as ground states of the model.
As an example, the ‘+’ and ‘−’ Ising phases can be obtained by fixing the
constant ‘+’, respectively the constant ‘−’ configurations at the boundaries
and by letting the volume tend to infinity. This idea has been generalized
to a wide class of models with both a finite and a ‘mildly’ infinite num-
ber of ground states, and is usually referred to as the Pirogov–Sinai the-
ory.(4,11,45,46,48) The main assumption is that the different ground states
are separated by high enough energy barriers, which can be described in
terms of domain walls, referred to as contours. A useful criterion to check
this so-called Peierls condition is within the formalism of m-potentials due
to Holzstynski and Slawny(27).

An alternative strategy is to employ a boundary condition that does not
favor any of the phases. Examples are the free and periodic boundary condi-
tions for the zero-field Ising model, or the periodic boundary conditions for the
Potts model at the critical temperature. In all these cases, an infinite-volume
Gibbs measure is obtained that is a homogenous mixture of all phases.

Another scenario has been expected to occur for spin glasses. Namely,
Newman and Stein have conjectured(37–39,41,42) that some spin glass mod-
els under symmetric boundary conditions exhibit non-convergence to a
single thermodynamic limit measure, a phenomenon called chaotic size-
dependence (see also refs. 14, 19, and 34). In this case, both the set of
limit points of the sequence of the finite-volume Gibbs measures and their
empirical frequency along the sequence of increasing volumes are of inter-
est, and the formalism of metastates has been developed(39–41) to deal with
these phenomena. These arguments have been made rigorous for a class of
mean-field models,(7,8,17,30–32,43) whereas no such results are available for
short-range spin glasses. For some general background on spin glasses and
disordered models we refer to refs. 6, 20, 33, and 47.

A natural toy-problem where the usual contour methods can be used
in the regime of chaotic size-dependence is the zero-field Ising model
with the boundary condition sampled from a random distribution which
is symmetric under the spin flip. In dimension 2 or more and at any
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subcritical temperature (including T =0) the finite-volume Gibbs measures
are expected to oscillate randomly between the ‘+’ and the ‘−’ phases,
demonstrating the chaotic size-dependence with exactly two limit points
coinciding with the thermodynamic phases of the model.(38) In particular,
one does not expect either any interface (e.g. Dobrushin) Gibbs states or
any non-trivial statistical mixtures to occur as the limit points. This prob-
lem was addressed in ref. 16 where the conjecture was rigorously proven
as the almost sure picture in the regime of the weak boundary coupling.
In this regime, the boundary bonds are made sufficiently weaker w.r.t. the
bulk bonds so that the interface configurations become damped exponen-
tially with the size of the system, uniformly for all boundary conditions.
Hence, all translationally non-invariant Gibbs measures are forbidden as
possible limit points and one only needs to prove that the mixtures do not
appear with probability 1.

In this paper we continue this study by removing the weakness
assumption on the boundary bonds. To be specific, we consider the 2d
Ising model with the random boundary condition sampled from the sym-
metric i.i.d. field {−1,1}Z

2
and coupled to the system via the bulk cou-

pling constant. The conjecture remains true in this case and the crucial
novelty of our approach is a detailed multi-scale analysis of contour mod-
els in the regime where realizations of the boundary condition are allowed
that violate the “diluteness” (Peierls) condition, possibly making interfaces
likely configurations. To be precise, these interfaces can have large Gibbs
probabilities for certain boundary conditions, but we will show that such
boundary conditions are sufficiently unlikely to occur for large volumes.
An important side-result is the almost sure absence of interface configu-
rations. This means that for a typical boundary condition, the probability
of the set of configurations containing an interface tends to zero in the
infinite-volume limit. Note that this excludes interfaces in a stronger way
than the familiar result about the absence of translationally non-invariant
Gibbs measures in the 2d Ising model.(1,22,26) Indeed, the absence of fluc-
tuating interfaces basically means that not only the expectations of local
functions but also their space averages (e.g. the volume-averaged magneti-
zation) have only two limit points, corresponding to the two Ising phases.
Hence, we believe that our techniques allow for a natural generalization
to any dimension d� 2. However, as already argued in ref. 16, in dimen-
sions d � 4, the set {µ+,µ−} is expected (and partially proven) to be the
almost sure set of limit measures, the limit being taken along the regu-
lar sequence of cubes. On the other hand, for d=2,3 the same result can
only be obtained if the limit is taken along a sparse enough sequence of
cubes. In the latter case it remains an open problem to analyze the set of
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limit points along the regular sequence of cubes. Our conjecture is that the
almost sure set of limit points coincides then with the set of all transla-
tionally invariant Gibbs measures, i.e. including the mixtures.

The structure of the paper is as follows. We will first introduce our
notation in Section 2, and describe our results in Section 3. Then in Sec-
tions 4 and 5 we will introduce a contour representation of the model and
set up our cluster expansion formalism. In Section 6 we first exclude the
occurrence of interfaces. In the rest of the paper we develop a multi-scale
argument, providing a weak version of the local limit theorem to show
that no mixed states can occur as limit points in the infinite-volume limit.
Two general results, the first one on a variant of the cluster expansion con-
vergence criteria for polymer models and the second one on local limit
upper bounds, are collected in Appendices A and B.

2. SET-UP

We consider the two-dimensional square lattice Z
2 and use the sym-

bols σ, η, . . . for the maps Z
2 �→{−1,1}. They are called spin configurations

and the set of all spin configurations is � = {−1,1}Z
2
. Furthermore, the

symbol σA is used for the restriction of a spin configuration σ ∈� to the
set A⊂Z

2. If A={x}, we write σx instead. The set of all restrictions of �
to the set A is �A.

A function f : � �→ R is called local whenever there is a finite set
D⊂Z

2 such that σD=σ ′
D implies f (σ)=f (σ ′). The smallest set with this

property is called the dependence set of the function f and we use the
symbol Df for it. To every local function f we assign the supremum norm
‖f ‖= supσ∈� |f (σ)|.

The spin configuration space � comes equipped with the product topol-
ogy, which is followed by the weak topology on the space M(�) of all proba-
bility measures on �. The latter is introduced via the collection of seminorms

‖µ‖X= sup
‖f ‖=1
Df ⊂X

|µ(f )| (1)

upon all finite X⊂ Z
2. Then, the weak topology is generated by the col-

lection of open balls BεX(µ)= {ν; ‖ν − µ‖X < ε}, ε > 0, X finite, and a
sequence µn ∈M(�) weakly converges to µ if and only if ‖µn−µ‖X → 0
for all finite X⊂Z

2. Under the weak topology, M(�) is compact.
We consider a collection of the Hamiltonians Hη

� : �� �→ R for all
square volumes �=�(N), N =1,2, . . . ,

�(N)={x ∈Z
2; ‖x‖�N}, ‖x‖=max{|x1|, |x2|} (2)
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and boundary conditions η∈�. The Hamiltonians are given by

H
η
�(σ�)=−β

∑

〈x,y〉⊂�
(σxσy −1)−β

∑

〈x,y〉
x∈�,y∈�c

σxηy (3)

where 〈x, y〉 stands for pairs of nearest neighboring sites, i.e. such that
‖x− y‖1 := |x1 − y1| + |x2 − y2| = 1, and �c = Z

2 \�. We consider the fer-
romagnetic case, β >0. Following a familiar framework, we introduce the
finite-volume Gibbs measure µη� ∈M(�) by

µ
η
�(σ)=

1

Z
η
�

exp[−Hη
�(σ�)] 1l{σ�c=η�c } (4)

and define the set Gβ of (infinite-volume) Gibbs measures, Gβ , as the weak
closure of the convex hull over the set of all weak limit points of the
sequences (µη�(N))N→∞, η ∈ �. A standard result reads that there exists
βc such that for any β >βc the set of Gibbs measures Gβ = {αµ+ + (1 −
α)µ−; 0�α�1}. Here, the extremal measures µ± are translation-invariant,
they satisfy the symmetry relation

∫
dµ+(σ ) f (σ )= ∫ dµ−(σ ) f (−σ), and

can be obtained as the weak limits limN→∞µ
η

�(N) for η≡±1.

3. RESULTS

We consider the limit behavior of the sequence of finite-volume Gibbs
measures (µη�(N))N∈N under boundary conditions η sampled from the i.i.d.
symmetric random field

P {ηx =1}=P {ηx =−1}= 1
2

(5)

Our first result concerns the almost sure structure of the set of all limit
points of the sequence of the finite-volume Gibbs measures, the limit being
taken along a sparse enough sequence of squares.

Theorem 3.1. For arbitrary ω>0 there is a β1 =β1(ω) such that for
any β�β1 the set of all weak limit points of any sequence (µ�(kN ))N=1,2,...,
kN �N2+ω, is {µ+,µ−}, P -a.s.

Remark 3.2. The above theorem does not exclude other measures
as the almost sure limit points, provided that other (non-sparse) sequences
of squares are taken instead. Actually, our conjecture is that, for β large
enough, the set of all weak limit points of (µ�(N))N=1,2,... coincides P -a.s.
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with Gβ . On the other hand, in dimension 3, it is rather expected to coin-
cide with the set of all translation-invariant Gibbs measures, and, in any
dimension higher than 3, with the set {µ+,µ−}.

Remark 3.3. A modification of the Hamiltonian (3) is obtained by
re-scaling the boundary coupling by a factor λ to get

H
λ,η
� (σ�)=−β

∑

〈x,y〉⊂�
(σxσy −1)−λβ

∑

〈x,y〉
x∈�,y∈�c

σxηy (6)

In this case, the claim of Theorem 3.1 for the sequence of the finite-
volume Gibbs measures

µ
λ,η
� (σ )= 1

Zλ,η
�

exp[−Hλ,η
� (σ�)] 1l{σ�c=η�c } (7)

was proven in ref. 16 under the condition that |λ| is small enough (= the
boundary coupling is sufficiently weak w.r.t. the bulk one). It was also
shown that {µ+,µ−} is the almost sure set of limit points of the sequence
(µ
η

�(N))N∈N, provided that the space dimension is at least 4.

To reveal the nature of all possible limit points that can appear along
the sequence of squares �(N), N = 1,2, . . . , we study the empirical fre-
quency for the finite-volume Gibbs states from the sequence (µη�(N))N∈N

to occur in a fixed set of measures. More precisely, for any set B⊂M(�),
boundary condition η∈�, and N =1,2, . . . , we define

Q
B,η
N = 1

N

N∑

k=1

1l{µη
�(k)

∈B} (8)

The next theorem shows the null-recurrent character of all measures
different from both µ+ and µ−. We use the notation B̄ and B0 for the
weak closure and the weak interior of B, respectively.

Theorem 3.4. There is β2 such that for any β�β2 and any set B⊂
M(�), one has

lim
N↑∞

Q
B,η
N =






0 if µ+,µ− �∈ B̄
1
2 if µ± ∈B0 and µ∓ �∈ B̄
1 if µ+,µ− ∈B0

(9)

with P -probability 1.
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Both theorems follow in a straightforward way from the following key
estimate that will be proven in the sequel of the paper.

Proposition 3.5. Given α>0, there is a β0 =β0(α) such that for any
β�β0, ε >0 and X⊂Z

d finite,

lim
N→∞

N
1
2 −α P {(‖µη�(N)−µ+‖X ∧‖µη�(N)−µ−‖X)� ε}<∞ (10)

Remark 3.6. The proposition claims that, for a typical η ∈ �, the
finite-volume Gibbs measures are expected to be near the extremal Gibbs
measures µ±. The above probability upper-bound of the form O

(
N− 1

2 +α
)

will be proven by means of a variant of the local limit theorem for the
sum of weakly dependent random variables. Although we conjecture the
correct asymptotics to be of order N− 1

2 , the proof of any lower bound
goes beyond the presented technique. This is why the detailed structure of
the almost sure set of the limit Gibbs measures is not available, except for
the limits taken along sparse enough sequences of squares.

Proof of Theorem 3.1. Given ω>0, we choose an α<ω/(2(2+ω))
and define β1(ω)=β0(α). Let β�β1(ω) and kN �N2+ω.

First let µ �∈ {µ+,µ−}. There exists a weakly open set B⊂M(�) such
that µ∈B and µ+,µ− �∈ B̄. Choosing a finite set X⊂ Z

2 and ε > 0 such
that BεX(µ

±)∩B=∅, Proposition 3.5 gives the bound

P {µη�(kN ) ∈B}�P {µη�(kN ) �∈BεX(µ+)∪BεX(µ−)}
=O(k(N)− 1

2 +α)=O(N−1+α(2+ω)− ω
2 ) (11)

Since
∑
N P {µη�(kN ) ∈ B}<∞, the set B contains P -a.s. no limit points

of the sequence µη�(kN ) due to the Borel–Cantelli argument. Hence, with
P -probability 1, µ is not a limit point.

To prove that both µ+ and µ− are P -a.s. limit points, take any finite
set of sites X and ε>0 such that BεX(µ

+)∩BεX(µ−)=∅. By the symmetry of
the distribution, P {µ�(kN )∈BεX(µ+)}=P {µ�(kN )∈BεX(µ−)} and, employing
Proposition 3.5 again, limN P {µ�(kN ) ∈BεX(µ±)}= 1

2 . By the Borel–Cantelli
and the compactness arguments, the weak closure B̄εX(µ

±) contains a limit
point, P -a.s. As µ± =∩X,εB̄εX(µ±), the statement is proven.

Proof of Theorem 3.4. Choose β2 = β0(α) for an arbitrary α ∈
(0, 1

2 ) and assume β�β2, B∈M(�). Using the notation qB,ηN =P {µη�(N)∈B}
and repeating the reasoning in the proof of Theorem 3.1, one gets
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E 1l{µη
�(N)

∈B} =qB,ηN

=






O(N− 1
2 +α)→0 if µ+,µ− �∈ B̄

1
2 −O(N− 1

2 +α)→ 1
2 if µ± ∈B0 and µ∓ �∈ B̄

1−O(N− 1
2 +α)→1 if µ± ∈B0

(12)

and

Var 1l{µη
�(N)

∈B} =qB,ηN (1−qB,ηN )�1
4

(13)

Hence,
∑
N

1
N2 Var 1l{µη

�(N)
∈B}<∞ and since the functions 1l{µη

�(N)
∈B}, N =

1,2, . . . are independent, the result immediately follows from the strong
law of large numbers.(13)

4. GEOMETRICAL REPRESENTATION OF THE MODEL

We define the dual lattice (Z2)∗ = Z
2 + (1/2,1/2). The (unordered)

pairs of nearest neighboring sites 〈x, y〉⊂Z
2 are called bonds and to every

bond we assign a unique dual bond 〈x∗, y∗〉≡ 〈x, y〉∗ ⊂ (Z2)∗. Given a set
of dual bonds A∗, we use the symbol |A∗| to denote the number of all
dual bonds in A∗. Further, with a slight abuse of notation, we also write
x∗ ∈A∗ whenever there exists a dual bond 〈x∗, y∗〉∈A∗, i.e. A∗ also stands
for the corresponding set of dual sites.

Any set A∗ of dual bonds is called connected whenever for any dual
sites x∗, y∗ ∈A∗ there exists a sequence of dual bonds 〈x∗, x∗

1 〉, 〈x∗
1 , x

∗
2 〉, . . . ,

〈x∗
k−1, y

∗〉∈A∗. The distance d[A∗,B∗] of the sets of dual bonds A∗,B∗ is
defined as the smallest integer k such that there exist x∗ ∈A∗, y∗ ∈B∗, and
a sequence of dual bonds 〈x∗, x∗

1 〉, 〈x∗
1 , x

∗
2 〉, . . . , 〈x∗

k−1, y
∗〉 ⊂ (Z2)∗. Simi-

larly, a set of sites A⊂Z
2 is called connected whenever for all x, y∈A there

exists a sequence of bonds 〈x, x1〉, 〈x1, x2〉, . . . , 〈xk−1, y〉⊂A. Correspond-
ingly, the distance d[A,B] of the sets A,B⊂Z

2 is understood in the sense
of the ‖.‖1-norm.

In the sequel we assume that a volume �=�(N) is fixed and we
define the boundary ∂� as the set of all dual bonds 〈x, y〉∗ such that x∈�
and y∈�c. In general, ∂A, A⊂� is the set of all dual bonds 〈x, y〉∗, x∈A,
y ∈�c. For any subset P ⊂ ∂� we use the symbol P to denote the set of
all sites y ∈�c such that there is a (unique) bond 〈x, y〉∗ ∈ P , x ∈�. If
P is a connected set of sites, then P is called a boundary interval. Obvi-
ously, any boundary interval is a connected set of dual bonds, however,
the opposite is not true. However, any set P ⊂∂� has a unique decomposi-
tion into a family of (maximal) boundary intervals. Furthermore, consider
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all connected sets Pi of dual bonds satisfying P ⊂Pi ⊂∂� which are min-
imal in the sense of inclusion. The smallest of these sets is called Con(P )
(in the case of an equal size take the first one in the lexicographic order)
and we use the shorthand |P |=|Con(P )|. Finally, we define the corners of
�(N) as the dual sites x∗

C,1 = (−N−1/2,−N−1/2), x∗
C,2 = (N+1/2,−N−

1/2), x∗
C,3 = (N +1/2,N +1/2), and x∗

C,4 = (−N −1/2,N +1/2).
Pre-contours. Given a configuration σ ∈��={−1,+1}�, the dual bond

〈x, y〉∗ to a bond 〈x, y〉⊂� is called broken whenever σx �=σy , and the set
of all the broken dual bonds is denoted by ��(σ). In order to define a suit-
able decomposition of the set ��(σ) into components, we take advantage
of a certain freedom in such a construction to obtain the components with
suitable geometrical properties. In this first step, we define the pre-contours
as follows. Consider all maximal connected components of the set of dual
bonds ��(σ). By the standard “rounding-corner” procedure, see Fig. 1, we
further split them into connected (not necessarily disjoint) subsets, γ , which
can be identified with (open or closed) simple curves. Namely,

γ ={〈x∗
0 , x

∗
1 〉, 〈x∗

1 , x
∗
2 〉, . . . , 〈x∗

k−1, x
∗
k 〉}, k∈N

such that if x∗
i = x∗

j , i �= j , then {i, j} = {0, k} and γ is closed. Otherwise,
x∗
i �=x∗

j for all i �= j and γ is open with x∗
0 , x

∗
k ∈ ∂�.

These γ are called pre-contours and we use the symbol D̃�(σ) for the
set of all pre-contours corresponding to σ ; write also D̃�={D̃�(σ), σ ∈��}
and use the symbol K̃� for the set of all pre-contours in �. Any pair of pre-
contours γ1, γ2 ∈ K̃� is called compatible whenever there is a configuration
σ ∈�� such that γ1, γ2 ∈ D̃�(σ). A set of pairwise compatible pre-contours
is called a compatible set. Obviously, D̃� is simply the collection of all com-
patible sets of pre-contours from K̃�. Intuitively, the pre-contours that are

γ1

γ2

γ3

Fig. 1. Pre-contours constructed via the rounding-corner procedure.
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closed curves coincide with the familiar Ising contours, whereas the pre-con-
tours touching the boundary become open curves.

Obviously, �� �→ D̃� is a two-to-one map with the images of the con-
figurations σ and −σ being identical. In order to further analyze this
map, we introduce the concept of interior and exterior of the pre-contours
briefly as follows (the details can be found in refs. 5 and 6). If σ ∈�� is
a configuration such that D̃�(σ)= {γ }, then there is a unique decompo-
sition of the set � into a pair of disjoint connected subsets, �=�1 ∪�2,
such that for any bond 〈x, y〉, x∈�1, y∈�2, one has 〈x, y〉∗ ∈γ . These are
called the exterior, Ext(γ ), and the interior, Int(γ ), where the assignment
is given by the following procedure. We distinguish three mutually exclu-
sive classes of pre-contours:

(i) Bulk pre-contours
∂�= ∂�1. Then, Ext(γ ) :=�1 and Int(γ ) :=�2, see Fig. 1.

(ii) Small boundary pre-contours
�1 contains at least three corners of � and ∂�2 �= ∅. Then,
Ext(γ ) :=�1 and Int(γ ) :=�2, see Fig. 2.

(iii) Interfaces
Both �1 and �2 contain exactly two corners of � and (a) |�1|>
|�2|, or (b) |�1| = |�2| and xC,1 ∈�1. Then, Ext(γ ) :=�1 and
Int(γ ) :=�2, see Fig. 3.

The set ∂γ := ∂Int(γ ) is called the boundary of the pre-contour γ .

Λ

γ

Ext(γ)

Int(γ)

Fig. 2. Small boundary pre-contour.
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Int(γ) 

Λ

γ

Ext(γ) 

Fig. 3. Interface.

Contours. Next, we define contours by gluing some boundary pre-con-
tours together via the following procedure. Any compatible pair of pre-
contours γ1, γ2 ∈ K̃� is called boundary-matching iff ∂γ1 ∩ ∂γ2 �= ∅. Any
compatible set of pre-contours such that the graph on this set obtained
by connecting the pairs of boundary-matching pre-contours becomes con-
nected is called a contour. In particular, every bulk pre-contour is bound-
ary-matching with no other compatible pre-contour. Therefore, every bulk
pre-contour is trivially a contour. We use the symbol D�(σ) for the set
of all contours corresponding to σ ∈ �� and K� for the set of all con-
tours in �. Any pair of contours 1,2 is compatible, 1 ∼2, whenever
all pairs of pre-contours γ1 ∈1, γ2 ∈2 are compatible, and we write D�

for the set of all families of pairwise compatible contours in �. All the
above geometrical notions naturally carry over to contours and we define
the exterior, Ext() := ∩γ∈Ext(γ ), the interior, Int() :=� \ Ext() (in
general, not a connected set anymore), the boundary ∂ := ∪γ∈∂γ , and
the length || :=∑

γ∈ |γ |. Similarly, if ∂ ∈D� is a configuration of con-
tours, let Ext(∂) :=∩∈∂Ext(), Int(∂) :=�\Ext(∂), and |∂| :=∑∈∂ ||.

Eventually we arrive at the following picture. The set K� of contours
is a union of three disjoint sets of contours, namely of the sets of all

(i) Bulk (pre-)contours.

(ii) Small boundary contours  defined by 1) ∂ �= ∅, and 2) no pre-
contour γ ∈ is an interface.

(a) Simple small boundary contours: the boundary ∂ contains
no corner, i.e. ∂ is a boundary interval.
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(b) Corner small boundary contours: there is exactly one corner
x∗
C,i ∈ ∂.

(iii) Large boundary contours , i.e. containing at least one interface
γ ∈.

Examples of the bulk, small boundary, and large boundary contours are
given in Figs. 4–5.

Furthermore, D�(σ) is a two-to-one map �� �→ D� satisfying the
spin-flip symmetry D�(σ)= D�(−σ). Since σ takes a unique spin value
in the set Ext(D�(σ)), there is a natural decomposition �� = �+

� ∪ �−
�

according to this value, i.e.

Γ2

Γ5

Γ4

Γ1
Γ3

Λ

Int(Γ2) 

Fig. 4. Bulk and small boundary contours.

Λ

Γ

Int(Γ) 

Fig. 5. Large boundary contour.
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�±
� :={σ ∈��; σ |Ext(D�(σ))

=±1}=−�∓
� (14)

As a consequence, D� splits into a conjugated (by spin-flip symmetry)
pair of one-to-one maps �±

� �→D�. This enables us to represent the finite-
volume Gibbs measure (4) in the form of a convex combination of two
conjugated constrained Gibbs measures as follows:

µ
η
�(σ) =

[
1+ Z−,η

�

Z+,η
�

]−1

ν
+,η
� (σ )+

[
1+ Z+,η

�

Z−,η
�

]−1

ν
−,η
� (σ ) (15)

where we have introduced the Gibbs measure constrained to �±
� by

ν
±,η
� (σ )= 1

Z±,η
�

exp[−Hη
�(σ)] 1{σ∈�±

�} (16)

Moreover, for any σ ∈�±
�, the Hamiltonian can be written as

H
η
�(σ)=E±,η

� (∂)+2β
∑

∈∂
|| (17)

with ∂=D�(σ), and we have introduced

E
±,η
� (∂)=−β

∑

〈x,y〉
x∈�,y∈�c

σxηy (18)

Finally, Z±,η
� is essentially the partition function of a polymer model,(29)

see also Appendix A,

Z±,η
� = exp (−E±,η

� (∅))∑∂∈D�

∏
∈∂ ρ±,η() (19)

where the polymers coincide with the contours and the polymer weights
are defined by

ρ±,η() = exp (−2β||) exp
(−E±,η()+E±,η(∅)) (20)

By the spin-flip symmetry, we can confine ourselves to the ‘+’ case and
use the shorthand notations ρη() := ρ+,η()= ρ−,−η(), Zη

� := Z+,η
� =

Z−,−η
� , Eη� :=E+,η

� =E−,−η
� , and ν

η
�(σ ) :=ν+,η

� (σ )=ν−,−η
� (−σ). Moreover,
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the boundary ∂ of a contour  has a natural decomposition into com-
ponents as follows. Let σ ∈ �+

� be such that D�(σ)= {}. Then the ‘±’
boundary component ∂± is defined as the set of all dual bonds 〈x, y〉∗
such that x ∈�, y ∈�c, σx =±1. With this definition, the contour weight
(20) is

ρη()= exp



−2β



||+
∑

x∈∂−
ηx







 (21)

Using the representation (15) of the finite-volume Gibbs measure µη�,
the strategy of our proof consists of two main parts:

(1) To prove that the constrained (random) Gibbs measure νη� asymp-
totically coincides with the Ising ‘+’ phase, for almost all η.

(2) To show that a sufficiently sparse subsequence of the sequence of
random free energy differences log Zη

�− log Z−η
� has +∞ and −∞ as the

only limit points, for almost all η.

Then, Proposition 3.5 follows almost immediately. Moreover, we will show
that for a P -typical boundary condition η and a µη�-typical configuration
σ ∈ ��, the corresponding set of pre-contours D̃�(σ) contains no inter-
faces.

Theorem 4.1. There is β3 such that for any β�β3 one has

lim
N↑∞

µ
η

�(N){D̃�(N)(σ ) contains an interface}=0 (22)

for P -a.e. η∈�.

Remark 4.2. Note that the low-temperature result by Gallavotti(22),
extended to all subcritical temperatures in refs. 1 and 26, about the
absence of translationally non-invariant Gibbs measures in the 2d Ising
model does not exclude fluctuating interfaces under a suitably arranged
(“Dobrushin-like”) boundary condition. On the other hand, the above
theorem claims that a typical boundary condition gives rise to a Gibbs
measure in which interfaces anywhere are suppressed. We mention this
side-result to demonstrate the robustness of the presented multi-scale
approach and to argue that it is essentially dimension-independent, the d=
2 case being chosen only for simplicity.
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It is easy to realize that, for a typical η, the polymer model (19)
fails the “diluteness” condition on the sufficient exponential decay of the
polymer weights, which means one cannot directly apply the familiar for-
malism of cluster expansions. These violations of the diluteness condition
occur locally along the boundary with low probability, and hence have
typically low densities. Nevertheless, their presence on all scales forces a
sequential, multi-scale, treatment. Multi-scale methods have been employed
at various occasions, such as for one-phase models in the presence of Grif-
fiths singularities or for the random field Ising model.(9,10,12,18,21,28) In
contrast to the usual case of cluster expansions one does not obtain ana-
lyticity (which may not even be valid). In our approach, we loosely fol-
low the ideas of Fröhlich and Imbrie.(21) For other recent work developing
their ideas, see refs. 2 and 3.

5. CLUSTER EXPANSION OF BALANCED CONTOURS

In this section we perform the zeroth step of the multi-scale analysis for
the polymer model (19), and set up the cluster expansion for a class of con-
tours the weight of which is sufficiently damped. As a result, an interacting
polymer model is obtained that will be dealt with in the next section.

Let an integer l0 be fixed. It is supposed to be large enough and the
precise conditions will be specified throughout the sequel. It plays the role
of an η-independent “cut-off scale”. Given any boundary condition η (fixed
throughout this section), we start by defining the set of contours that allow
for the cluster expansion. Obviously, every bulk contour  has the weight
ρη()= exp(−2β||). For boundary contours, there is no such exponential
bound with a strictly positive rate, uniformly in η. Instead, we segregate an
η-dependent subset of sufficiently damped boundary contours as follows.

Definition 5.1. Given η ∈ �, a boundary contour  is called bal-
anced (or η-balanced) whenever

∑

x∈∂−
ηx �−

(
1− 1

l0

)
|| (23)

Otherwise  is called unbalanced.
A set B⊂ ∂� is called unbalanced if there exists an unbalanced con-

tour , ∂−=B.

While the case of large boundary contours will be discussed separately
in the next section, some basic properties of unbalanced small boundary
contours are collected in the following lemma. We define the height of any
simple boundary contour  as
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h()=max
y∗∈

d[y∗, ∂] (24)

In order to extend this definition to small boundary contours  such that
∂ contains an (exactly one) corner, we make the following construction.
If ∂ is a connected subset of the boundary with the endpoints [±(N +
1/2), a] and [b,±(N + 1/2)], then we define the set R()⊂ (Z2)∗ as the
(unique) rectangle such that [±(N + 1/2), a], [b,±(N + 1/2)], and [±(N +
1/2),±(N + 1/2)] are three of its corners. Now the height is the maximal
distance of a point in the contour to this rectangle,

h()=max
y∗∈

d[y∗,R()] (25)

The situation is illustrated in Fig. 6.

Lemma 5.2. Let  be an unbalanced small boundary contour. Then,

(i)
∑
x∈∂ ηx�−

(
1− 2

l0

)
|∂|.

(ii) |∂|� l0h(). In particular, if  is simple then |∂|� l0.

Proof. For any unbalanced contour , Definition 5.1 together with the
bound ||� |∂| valid for any small boundary contour implies the inequalities

−|∂−|�
∑

x∈∂−
ηx <−

(
1− 1

l0

)
||�−

(
1− 1

l0

)
|∂| (26)

Γ1

Γ2

Λ

h(Γ1)  

h(Γ2)  

Fig. 6. Height of small boundary contours.
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Hence, |∂+|� 1
l0

|∂| and we obtain

∑

x∈∂
ηx�−

(
1− 1

l0

)
|∂|+ |∂+|�−

(
1− 2

l0

)
|∂| (27)

proving (i).
If  is simple, then we use (26) again together with the refined rela-

tion ||� |∂|+2h() to get

|∂|�
(

1− 1
l0

)
||�

(
1− 1

l0

)
(|∂|+2h()) (28)

which implies |∂| � l0h()� l0, assuming l0 � 2 and using that h()� 1
for any simple small boundary contour.

Since the definition of the height is such that the inequality || �
|∂|+2h() remains true as well for any small boundary contour  such
that ∂ contains a corner, the lemma is proven.

The union of the set of all bulk contours and of the set of all bal-
anced boundary contours is denoted by Kη

0. We also write Dη

0 for the set
of all compatible families of contours from Kη

0, and Dη

>0 for the set of all
compatible families of contours from K� \Kη

0. Later we will show that, for
almost every η, all large boundary contours (i.e. those containing at least
one interface) are balanced for all but finitely many squares �(N).

Formally, the partition function (19) can be partially computed by
summing over all contours from the set Kη

0. We start by rewriting parti-
tion function (19) as

Zη
�= exp (−Eη(∅))

∑

∂∈Dη

>0

∏

∈∂
ρη()

∑

∂0∈Dη
0

∂0∼∂

∏

0∈∂0

ρη(0) (29)

Here, the first sum runs over all compatible families ∂ of contours not
belonging to Kη

0, while the second one is over all collections of contours
from Kη

0, compatible with ∂. Let C0
� denote the set of all clusters of con-

tours from Kη

0. Then, the cluster expansion reads, see Appendix A,

Zη
�= exp (−Eη(∅))

∑

∂∈Dη

>0

∏

∈∂
ρη() exp




∑

C∈C
η
0

C∼∂

φ
η

0 (C)



 (30)
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where the sum runs over all clusters of contours from Kη

0 that are compat-
ible with ∂, and we have denoted the weight of a cluster C by φη0 (C). Note
that the cluster expansion was applied only formally here and it needs to
be justified by providing bounds on the cluster weights. This is done in
Proposition 5.4 below.

Hence, we rewrite the model with the partition function Zη
� as an

effective model upon the contour ensemble K� \Kη

0, with a contour inter-
action mediated by the clusters:

Zη
�= Zη

1 exp



−Eη(∅)+ ∑

C∈C
η

0

φ
η

0 (C)



 (31)

where

Zη

1 =
∑

∂∈Dη

>0

exp



−
∑

C∈C
η
0

C �∼∂

φ
η

0 (C)




∏

∈∂
ρη() (32)

After establishing an exponential upper bound on the number of incompatible
contours in the next lemma, a bound on the cluster weights immediately follows
by recalling the basic result on the convergence of the cluster expansions.(29)

Lemma 5.3. There exists a constant c1>0 (independent of l0) such
that the number of all contours ′ ∈K�, |′|=n, ′ �∼ is upper-bounded
by || ec1n, for any ∈K� and n=1,2, . . .

Proof. Note that  is not necessarily a connected set. However, the
relation ′

� implies (′ ∪ ∂′)∩ ( ∪ ∂) �= ∅, and using that  ∪ ∂ is
connected, we get:

#{′ : ′
�, |′|=n}�|∪ ∂| sup

x∗
#{′ : x∗ ∈′ ∪ ∂′, |′|=n}

�3|| sup
x∗

#{A⊂ (Z2)∗ connected, x∗ ∈A, |A|�3n}

�|| ·46n+1�|| ec1n

by choosing c1 large enough.

Assigning to any cluster C∈C
η

0 the domain Dom(C)=∂C where ∂C=
∪∈C∂ is the boundary of C, and the length |C|=∑∈C ||, we have the
following result.

Proposition 5.4. There are constants β4, c2 > 0 (independent of l0)
such that for any β� l0β4, one has the upper bound
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sup
x∗

∑

C∈C
η
0

x∗∈C

|φη0 | exp
[(

2β
l0

− c2

)
|C|
]
�1 (33)

uniformly in �.
Moreover, φη0 (C) only depends on the restriction of η to the set Dom(C).

Proof. Using Definition 5.1 and Eq. (21), we have ρη()� exp(− 2β
l0

||)
for any balanced contour . In combination with Lemma 5.3, we get

∑

∈Kη0
x∗∈

|ρη()| exp
[(

2β
l0

− c2 +1
)

||
]

�
∞∑

n=1

exp[−(c2 − c1 −1)n]�1 (34)

provided that c2 is chosen large enough. The proposition now follows by
applying Proposition A.2, with β4 = c2

2 .

6. ABSENCE OF LARGE BOUNDARY CONTOURS

By the construction, all unbalanced contours are boundary contours,
either small or large. In this section we show that unbalanced large bound-
ary contours actually do not exist under a typical realization of the
boundary condition. This observation will allow us to restrict our multi-
scale analysis entirely to the class of small boundary contours.

Lemma 6.1. There is a constant c3>0 such that for any N ∈N and
any unbalanced large boundary contour ∈K�(N), the inequality

∑

x∈∂
ηx�− c3N (35)

holds true.

Proof. Using the geometrical inequality ||� 2N + |∂+| and Defi-
nition 5.1, we have

∑

x∈∂
ηx � −

(
1− 1

l0

)
||+

∑

x∈∂+
ηx

� −
(

1− 1
l0

)
(2N +|∂+|)+|∂+|

� −2N
(

1− 3
l0

)
(36)
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where in the last inequality we used that |∂+|�|∂|�4N .

Proposition 6.2. There is a constant c4>0 such that for any N ∈N,

P {∃∈K�(N) large unbalanced}� exp(−c4N) (37)

Proof. If B⊂ ∂�(N) is a connected set containing exactly two cor-
ners, then, using Lemma 6.1,

P {∃∈K�(N) large unbalanced : ∂=B}�P
{∑

x∈B ηx�− c3N
}

�P
{∑

x∈B ηx�− c3
2 |B|

}
� exp

(
− c2

3
8 |B|

) (38)

Hence,

P {∃∈K�(N) large unbalanced}
�
∑

B⊂∂�
P {∃∈K�(N) large unbalanced : ∂=B}

�
∑

l�2N

8N exp

(
−c

2
3

8
l

)
�128N

c2
3

exp

(
−c

2
3N

4

)
� exp(−c4N) (39)

for N large enough and an appropriate c4. Choosing c4 small enough gives
(37) for all N .

Corollary 6.3. There exist a set �∗ ⊂ �, P {�∗} = 1 and a function
N∗ :�∗ �→N such that for any b.c. η∈�∗ and any volume �=�(N), N �
N∗(η), all large boundary contours are balanced.

Proof. Since

∑

N

P {∃∈K�(N) large unbalanced}<∞ (40)

the Borel–Cantelli lemma implies

P {∀N0 ∈N : ∃N �N0 : ∃∈K�(N) large unbalanced}=0 (41)

proving the statement.

We are now ready to prove the almost sure absence of interfaces in
the large-volume limit.
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Proof of Theorem 4.1. Let η ∈ �∗ ∩ (−�∗) and N �N∗(η). Then,
any large boundary contour  is both η- and (−η)-balanced and, using
the Peierls inequality and (15), the Gibbs probability of any collection of
(possibly large boundary) contours 1, . . . , m, m=1,2, . . . has the upper
bound

µ
η

�(N)(1, . . . , m)� max
a∈{−1,1}

ν
aη

�(N)(1, . . . , m)

� max
a∈{−1,1}

m∏

i=1

ρaη(i)� exp

(
−2β
l0

m∑

i=1

|i |
)

(42)

Hence, using Lemma 5.3 and the bound ||�2N for any large boundary
contour , we get

µ
η

�(N)(∃ a large boundary contour)�
∞∑

m=1

1
m!

∑

1,... ,m large
∀i:i∩∂��=∅

µ
η

�(N)(1, . . . , m)

�
∞∑

m=1

1
m!

∑

x1,... ,xm∈∂�

∑

1�x1,... ,m�xm
exp

(
−2β
l0

m∑

i=1

|i |
)

� exp
(

−2β
l0
N

) ∞∑

m=1

1
m!



4N
∑

�x
||�2N

e
− β
l0

||





m

� exp
[
−
(

2β
l0

−8e
−2
(
β
l0

−c1

)
N
)
N

]
−→0 (43)

provided that β is large enough. Since P {�∗ ∩ (−�∗)}= 1, the theorem is
proven.

As a consequence, all interfaces get P -a.s. and for all but finitely
many volumes uniformly exponentially damped weights. Hence, their
Gibbs probabilities become exponentially small as functions of the size
of the system and, therefore, no interfacial infinite-volume Gibbs measure
occurs as a limit point, with P -probability 1. While such a result is not
sensational in d = 2 (in this case, no translationally non-invariant Gibbs
measure exists by refs. 1 and 26), similar arguments are expected to apply
in higher dimensions.

In the next sections, a perturbation technique is developed that allows
us to address the question whether non-trivial mixtures of µ+ and µ− can
occur as limit measures.
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7. CLASSIFICATION OF UNBALANCED CONTOURS

We now consider the interacting contour model introduced by the par-
tition function (32), defined on the set of unbalanced contours K� \Kη

0. As
a consequence of Corollary 6.3, we can restrict our analysis to the set �∗ of
boundary conditions under which the set K� \Kη

0 of unbalanced contours
contains only small boundary contours, both simple and corner ones.

Our multi-scale analysis consists of a sequential expansion of groups
of unbalanced contours that are far enough from each other. The groups
are supposed to be typically sufficiently rarely distributed, so that the par-
tition function (31) can be expanded around the product over the partition
functions computed within these groups only. Under the condition that the
density of the groups decays fast enough with their space extension, one
can arrive at an expansion that essentially shares the locality features of
the usual cluster expansion, at least for P -typical boundary conditions η.
To make this strategy work, we define a suitable decomposition of the set
K� \Kη

0 into disjoint groups associated with a hierarchy of length scales.
Also, the unbalanced contours close enough to any of the four corners will
be dealt with differently and expanded in the end.

Definition 7.1. Assuming l0 to be fixed, we define the two sequences
(ln)n=1,2,... and (Ln)n=1,2,... by the following recurrence relations:

Ln = ln−1

5n
, ln= exp

(
Ln

2n

)
n=1,2, . . . (44)

For any n=1,2, . . . , any pair of contours ,′ is called Ln-connected,
if d[,′]�Ln. Furthermore, fixing a positive constant ε >0, we introduce
the N -dependent length scale

l∞ = (logN)1+ε (45)

Introducing the boundary ∂� for any set of contours �⊂ K� by ∂�=
∪∈�∂, we consider the η-dependent decomposition of the set of con-
tours K� \Kη

0 defined by induction as follows.

Definition 7.2.

(1) A maximal L1-connected subset � ⊂ K� \ Kη

0 is called a
1-aggregate whenever (i) |∂�|con�l1, (ii) there is no corner x∗

C,i such that
maxy∗∈∂� d[y∗, x∗

C,i ]� l∞. We use the notation (Kη

1,α) for the collection of
all 1-aggregates, and write Kη

1 =∪αKη

1,α.
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...

(n) Assume the sets (Kη
j,α)j=1,... ,n−1 have been defined. Then,

the n-aggregates are defined as maximal Ln-connected subsets
� ⊂ K� \ ∪j<nKη

j satisfying (i) |∂�|con�ln, (ii) there is no corner x∗
C,i

such that maxy∗∈∂� d[y∗, x∗
C,i ]�l∞. The set of all n-aggregates is denoted

by (Kη
n,α), and Kη

n=∪αKη
n,α.

To each n-aggregate Kη
n,α we assign the domain

Dom(Kη
n,α) :={x∗ ∈ ∂�; d[x∗, ∂Kη

n,α]�Ln} (46)

Obviously, the set Kη
∞ :=K� \ (Kη

1 ∪Kη

2 ∪· · · ) need not be empty, and
since all large boundary contours are balanced, for every contour ∈Kη

∞
there is exactly one corner x∗

C,i such that maxy∗∈∂ d[y∗, x∗
C,i ]� l∞. Hence,

there is a natural decomposition of the set Kη
∞ into at most four corner

aggregates, Kη
∞ =∪iKη

∞,i , each of them consisting of contours within the
logarithmic neighborhood of one of the corners. In general, any corner
aggregate contains both simple and corner boundary contours. Later we
will show that with P -probability 1, every unbalanced corner boundary
contour belongs to a corner aggregate. In other words, every n-aggregate,
n=1,2, . . . contains only simple boundary contours.

Remark 7.3. By Definition 7.2, any n-aggregate has a distance at least
Ln from all m-aggregates, m� n. In this way, in the nth step of our expan-
sion, after having removed all lower-order aggregates, we will be able to use
the “essential independence” of all n-aggregates. Namely, on the assumption
that Ln is big enough, depending on the aggregate size ln, both the interac-
tion among the n-aggregates and the interaction between n-aggregates and
m-aggregates,m�n will be controlled by a cluster expansion.

Our first observation is a local property of the above construction,
which will be crucial to keep the dependence of expansion terms to be
defined later depending only on a sufficiently small set of boundary spins.

Lemma 7.4. Let a set of small boundary contours � be fixed and
assume that η, η′ ∈ � are such that ηDom(�) = η′

Dom(�). Then, � is an n-
aggregate w.r.t. the boundary condition η if and only if it is an n-aggregate
w.r.t. η′.

The super-exponential growth of the scales ln will imply an exponen-
tial decay of the probability for an n-aggregate to occur. An upper bound
on this probability is stated in the following proposition, the proof of
which is given in Section 11.1.
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Proposition 7.5. There is a constant c5>0 (independent of l0) such
that for any n=1,2, . . . and any connected set B⊂ ∂�,

P {∃Kη
n,α : Con(∂Kη

n,α)=B}�e−c5|B| (47)

uniformly in �.

Note that, given a connected set B⊂ ∂�, there is at most one aggre-
gate Kη

n,α, n=1,2, . . . such that Con · (∂Kη
n,α)=B.

Corollary 7.6. There exists �∗∗ ⊂�∗, P {�∗∗}=1 and N∗∗ :ω∗∗ �→N,
N∗∗(ω)�N∗(ω) such that for any ω∈�∗∗ and any �=�(N), N�N∗∗(ω)
every aggregate Kη

n,α, n=1,2, . . . satisfies the inequality |∂Kη
n,α|con�l∞. In

particular:

(i) The set Con(Kη
n,α) is a boundary interval and there is at most one

corner x∗
C,i such that d[x∗

C,i, ∂Kη
n,α]�l∞.

(ii) All contours ∈Kη
n,α are simple boundary contours.

Proof. Using Proposition 7.5, the probability for any aggregate to
occur can be estimated as

P {∃Kη
n,α, n=1,2, . . . : |∂Kη

n,α|con>l∞}�
∑

B⊂∂� conn.
|B|>(logN)1+ε

P {∃Kη
n,α : Con(Kη

n,α)=B}

�|∂�|
∑

l>(logN)1+ε
e−c5l�16

c5
N1−c5(logN)ε =o (N−δ) (48)

for any (arbitrarily large) δ>0. Hence,

∞∑

N=1

P {∃Kη
n,α, n=1,2, . . . : |∂Kη

n,α|con>l∞}<∞ (49)

and the statement follows by a Borel–Cantelli argument.

For convenience, let us summarize the results of the last three sections
by reviewing all types of contours again together with their balancedness
properties. For any η∈�∗∗ and �=�(N), N �N∗∗(ω), any configuration
of contours ∂ ∈D� possibly contains

(i) Bulk contours (trivially balanced).

(ii) Large boundary contours that are balanced.



On the Ising Model with Random Boundary Condition 1021

(iii) Corner boundary contours that are either balanced or elements of
corner aggregates.

(iv) Simple boundary contours which are balanced or elements of
either n-aggregates, n=1,2, . . . , or of corner aggregates.

8. SEQUENTIAL EXPANSION OF UNBALANCED CONTOURS

The next step in our strategy is to proceed by induction in the order
of aggregates, rewriting at each step the interacting polymer model (32)
as an effective model over the contour ensembles K� \ (Kη

0 ∪ Kη

1), K� \
(Kη

0 ∪ Kη

1 ∪ Kη

2), etc. At the nth step, a compatible set of contours inside
all corner and all normal m-aggregates, m> n, is fixed, and we perform
the summation over contours in all normal n-aggregates. This is a con-
strained partition function which is approximately a product over the normal
n-aggregates. By the construction, the latter are sufficiently isolated on the scale
Ln, which will allow for the control of the remaining interaction by means of
a cluster expansion. At the end, we arrive at an effective model over the con-
tour ensemble Kη

∞, which is the union of (at most four) corner aggregates. In
large volumes, the corner aggregates become essentially independent, the error
being exponentially small in the size of the volume. The reason we distinguish
between the n-aggregates and the corner aggregates is that the partition func-
tion within the former allows for a much better control, which will be essential
in our analysis of the characteristic function of the random free energy differ-
ence log Zη

� − log Z−η
� in Section 10. Note that the lack of detailed control

around the corners is to be expected as there may more easily occur some low-
energy (unbalanced) boundary contours, but at most of logarithmic size inN .

The nth step of the expansion, n�1, starts from the partition function,

Zη
n =

∑

∂∈Dη

>n−1

exp



−
∑

C∈C
η
n−1

C�∂

φ
η

n−1(C)




∏

∈∂
ρη() (50)

which in the case n= 1 coincides with (32). Here, Dη

>n−1 is the set of all
compatible families of contours from Kη

>n−1 :=Kη
� \ (Kη

0 ∪Kη

1 ∪· · ·∪Kη

n−1),
i.e. with all normal m-aggregates, m�n− 1, being removed. Furthermore,
we use the notation C

η

n−1 for the set of all (n− 1)-clusters. Here, the 0-
clusters have been introduced in Section 5, and the clusters of higher order
will be defined inductively in the sequel.

In order to analyze partition function (50), we follow the ideas of Fröh-
lich and Imbrie(21), however, we choose to present them in a slightly different
way. Observing that, by construction, the family of aggregates compose a
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“sparse set”, one is tempted to approximate the partition function by a prod-
uct over the aggregates and to control the error by means of a cluster expan-
sion. However, to make this strategy work, we need to “renormalize” suit-
ably the contour weights. Namely, only the clusters that intersect at least
two distinct aggregates generate an interaction between them, and are suffi-
ciently damped by using the sparsity of the set of aggregates. On the other
hand, the (sufficiently short) clusters intersecting a single aggregate cannot
be expanded, and they modify the weights of contour configurations within
the aggregate. An important feature of this procedure is that the weight of
these contour configurations is kept positive. In some sense, it is this very
renormalization of the weights within each aggregate that can hardly be
done via a single expansion and requires an inductive approach. In what
follows, we present this strategy in detail, via a number of steps.

8.1. Renormalization of Contour Weights

For any compatible set of contours ∂⊂Kη
n, define the renormalized weight

ρ̂η(∂)= exp



−
∑

C∈C
η
n−1

C�∂; |C|<Ln

φ
η

n−1(C)




∏

∈∂
ρη() (51)

Note that the above sum only includes the clusters of length smaller
than Ln. By construction, any such cluster is incompatible with at most
one n-aggregate. Hence, the renormalized weight ρ̂η() factorizes over the
n-aggregates and we have ρ̂η(∂)=∏

α ρ̂
η(∂α) where ∂α = ∂ ∩ Kη

n,α. There-
fore, formula (50) gets the form

Zη
n =

∑

∂∈Dη
>n

∏

∈∂
ρη()

∑

∂n∈Dη
n

ρ̂η(∂n) exp



−
∑

C∈C
η
n−1

(C�∂)∨(C�∂n; |C|�Ln)

φ
η

n−1(C)





=
∑

∂∈D>n

∏

∈∂
ρη() exp



−
∑

C∈C
η
n−1

C�∂

φ
η

n−1(C)





×
∑

∂n∈Dη
n

ρ̂η(∂n) exp



−
∑

C∈C
η
n−1; |C|�Ln

C∼∂;C�∂n

φ
η

n−1(C)



 (52)
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Defining the renormalized partition function Ẑη
n,α of the contour

ensemble Kn,α
� as

Ẑη
n,α =

∑

∂n∈Dη
n,α

ρ̂η(∂n) (53)

and using the shorthand

φ̃
η

n−1(C, ∂
n)=φη

n−1(C)1{C�∂n; |C|�Ln} (54)

we obtain

Zη
n =

∏

α

Ẑη
n,α

∑

∂∈Dη
>n

∏

∈∂
ρη() exp



−
∑

C∈C
η
n−1

C�∂

φ
η

n−1(C)





×
∑

∂n∈Dη
n

∏

α

ρ̂η(∂n,α)

Ẑη
n,α

exp



−
∑

C∈C
η
n−1

C∼∂

φ̃
η

n−1(C, ∂
n)



 (55)

where ∂n,α = ∂n ∩Kη
n,α is the restriction of ∂n to the n-aggregate Kη

n,α. In the
last expression, the second sum contains the interaction between n-aggregates,
to make a correction to the product over the renormalized partition functions
Ẑη
n,α.

8.2. Cluster Expansion of the Interaction Between n-Aggregates

Now we employ a trick familiar from the theory of high-temperature
(Mayer) expansions, and assign to any family C ⊂C

η

n−1 of (n− 1)-clusters
the weight

wηn(C)=
1

∏
α Ẑη

n,α

∑

∂n∈Dη
n

ρ̂η(∂n)
∏

C∈C

(
e−φ̃

η

n−1(C,∂
n)−1

)
(56)

See Fig. 7 for an example of a family of 1-clusters that generically gets a
non-trivial weight according to this construction.

Definition 8.1. Any pair of (n− 1)-clusters C1,C2 ∈ C
η

n−1 is called

n-incompatible, C1
n

�↔C2, whenever there exists an n-aggregate Kη
n,α such

that C1 � Kη
n,α and C2 � Kη

n,α. In general, the sets C1,C2 ⊂ C
η

n−1 are n-

incompatible if there are C1 ∈C1, C2 ∈C2, C1
n

�↔C2.
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2,1

2,2 2,3

2,4

C2

C1

Fig. 7. A pair of 2-compatible families of 1-clusters C1,C2 ⊂ C
η

1 intersecting 2-aggregates
K
η

2,α , α= 1,2,3,4. The dashed rectangles illustrate 1-aggregates which have become parts of
the 1-clusters. By construction, wη2 (C1 ∪C2)=wη2 (C1)w

η

2 (C2).

One easily checks the following properties of the weight wηn(C).
Lemma 8.2. For any set of (n−1)-clusters C ∈C

η

n−1,

(i) supη |wηn(C)|�
∏
C∈C(e

|φη
n−1(C)| −1).

(ii) If C =C1 ∪C2 such that C1
n↔C2, then w

η
n(C)=wηn(C1)w

η
n(C2).

(iii) The weight wηn(C) depends only on the restriction of η to the set
(∪C∈CDom(C)) ∪ (∪′

αDom(Kη
n,α)) where the second union is over all n-

aggregates Kη
n,α such that C �Kη

n,α.

In the second sum in (55) we recognize the partition function of a
polymer model with the polymers being defined as the n-connected sub-
sets of C

η

n−1, which are incompatible if and only if they are n-incompati-
ble. Treating this polymer model by the cluster expansion, and using the
symbols D

η
n for the set of all clusters in this polymer model and ψ

η
n (D)

for the weight of a cluster D∈D
η
n , we get

Zη
n =

∏

α

Ẑη
n,α

∑

∂∈Dη
>n

∏

∈∂
ρη() exp



−
∑

C∈C
η
n−1

C�∂

φ
η

n−1(C)




∑

C⊂C
η
n−1

C∼∂

wηn(C)
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= exp




∑

D∈D
η
n

ψηn (D)




∏

α

Ẑη
n,α

∑

∂∈Dη
>n

∏

∈∂
ρη()

× exp



−
∑

C∈C
η
n−1

C�∂

φ
η

n−1(C)−
∑

D∈D
η
n

D�∂

ψηn (D)



 (57)

Defining the set of all n-clusters C
η
n = C

η

n−1 ∪ D
η
n and the weight of any

n-cluster C ∈C
η
n as

φηn(C)=
{
φ
η

n−1(C) if C ∈C
η

n−1
ψ
η
n (C) if C ∈D

η
n

(58)

we finish the inductive step by obtaining the final expression

Zη
n =Zη

n+1

∏

α

Ẑη
n,α exp




∑

D∈D
η
n

ψηn (D)



 (59)

with the partition function of a new interacting polymer model

Zη

n+1 =
∑

∂∈Dη
>n

exp



−
∑

C∈C
η
n

C�∂

φηn(C)




∏

∈∂
ρη() (60)

We need to extend the notion of domain from the set of (n− 1)-
clusters C

η

n−1 to the set of n-clusters C
η
n. Realizing that any n-cluster D ∈

D
η
n is a collection (Ci ) of Ln-connected families of (n− 1)-clusters, Ci =

(Csi ), we first introduce the domain of any such family Ci as Dom(Ci )=
∪sDom(Csi ). Next, we define

Dom(D) :=
⋃

i

Dom(Ci )∪
⋃

α:Kη
n,α�D

Dom(Kη
n,α) (61)

Furthermore, the length |D| of the cluster is defined as

|D| :=
∑

i

|Ci |=
∑

i

∑

s

|Csi | (62)
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Note that this is possibly much smaller than the diameter of the cluster,
since the sizes of the n-aggregates in the domain of D are not counted
in the length of the cluster. The reason for this definition is that the clus-
ter weights are not expected to be exponentially damped with the cluster
diameter. Note, however, that the probability of a cluster to occur is expo-
nentially damped with the size of the n-aggregates in its domain.

In the next proposition, we provide uniform bounds on the n-cluster
weights. For the proof, see Section 11.

Proposition 8.3. There is β5>0 such that for any β� l0β5, η∈�∗∗,
�=�(N), N �N∗∗(η), the inequalities

sup
x∗

∑

D∈D
η
n

x∗∈D

exp
(
β

l0
|D|

)
|ψηn (D)| �2−n n=1,2, . . . (63)

and

sup
n

sup
x∗

∑

C∈C
η
n

x∗∈C

exp
(
β

l0
|C|
)

|φηn(C)| �1 (64)

hold true.
Moreover, if C ∈C

η
n and η′|Dom(C)=η|Dom(C), then also C ∈C

η′
n and

φ
η′
n (C)=φηn(C). Similarly, D∈D

η
n and η′|Dom(D)=η|Dom(D) implies both

D∈D
η′
n and ψ

η′
n (D)=ψηn (D).

8.3. Expansion of Corner Aggregates

For any finite square�=�(N) andη∈�, all aggregates from the set ∪nKη
n

are expanded in a finite number of steps. Afterwards, all corner aggregates are
treated by a similar procedure. Throughout this section, we use the notation n0
for the highest order in the collection of all normal aggregates. The expansion
goes similarly as in the case of normal aggregates, so we only sketch it.

The renormalized weight of any compatible family of contours ∂ ⊂
Kη

∞ is defined by the formula

ρ̂η(∂)= exp



−
∑

C∈C
η
n0

C�∂; |C|<2l∞

φ
η

n0−1(C)




∏

∈∂
ρη() (65)

which factorizes over the corners, ρ̂η(∂)=∏i ρ̂
η(∂ ∩Kη

∞,i ), assuming �(N)
to be large enough. Clusters C1,C2 ⊂C

η
n0 are called ∞-incompatible when-
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ever there is a corner aggregate Kη
∞,i such that C1 �K∞,i and C2 �K∞,i .

Defining the weight wη(C) as

wη(C)= 1
∏
i Ẑη

∞,i

∑

∂∈Dη
∞

ρ̂η(∂)
∏

C∈Cηn0

(
e
−φ̃ηn0 (C,∂)−1

)
(66)

where

Ẑη
∞,i =

∑

∂∈Dη
∞,i

ρ̂η(∂) (67)

and

φ̃
η
∞(C, ∂)=φη∞(C)1{C�∂; |C|�2l∞} (68)

an obvious variant of Lemma 8.2 holds true and wη(C) factorizes into a
product over maximal connected components of C w.r.t. ∞-incompatibil-
ity. Treating these as polymers in a new polymer model with ∞-incompat-
ibility used as the incompatibility relation, and using the notation D

η
∞ for

the set of all clusters in this polymer model and ψ
η
∞(D) for the cluster

weights, we obtain as the final step of the sequential expansion,

Zη

n0+1 = exp




∑

D∈D
η
∞

ψ
η
∞(D)




∏

i

Ẑη
∞,i (69)

Proposition 8.4. There exist constants β6 �β5, c6> 0 such that for
any β� l0β6, η∈�∗∗, and volume �(N), N �N∗∗(η), one has the bound

∑

D∈D
η
∞

|ψη∞(D)|�e−c6l∞ (70)

Gathering all expansion steps, we arrive at the final expression for the
partition function Zη

� in the form

log Zη
� = −Eη(∅)+

∑

C∈C
η

0

φ
η

0 (C)+
∑

n�1

∑

D∈D
η
n

ψηn (D)+
∑

D∈D
η
∞

ψ
η
∞(D)

+
∑

i

log Ẑη
∞,i +

∑

n�1

∑

α

log Ẑη
n,α (71)
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The terms collected on the first line contain the “vacuum” energy under
the boundary condition η, together with the contributions of clusters of all
orders. Recall that the latter allow for a uniform exponential upper bound.
On the second line there are the partition functions of all n- and all corner
aggregates. Although we can provide only rough upper bounds for these
terms, a crucial property to be used is that the probability of an aggregate
to occur is exponentially small in the size of its boundary, see Section 7.
In this sense, the above expansion is a natural generalization of the famil-
iar “uniform” cluster expansion.(29)

8.4. Estimates on the Aggregate Partition Functions

In expression (71) we do not attempt to perform any detailed expansion of
the aggregate’s (log-)partition functions Ẑη

n,α and Ẑη
∞,i via a series of local and

exponentially damped terms. Instead, we follow the idea that a locally ill-behav-
ing boundary condition forces a partial coarse-graining represented above via
the framework of aggregates of different orders. Although the detailed (clus-
ter expansion-type) control within the aggregates is lost, we still can provide
generic upper bounds on these partition functions. Notice a basic difference
between n-aggregates and corner aggregates: The former contain only simple
boundary contours the weights of which exponentially decay with the height of
the contours. In some sense, the partition functions Ẑη

n,α can be compared with
the partition function of a 1d interface to get an upper bound. On the other
hand, the corner aggregates are ensembles of contours the weight of which obey
no uniform exponential bound with the space extension of the contours, and
allow possibly for a non-trivial “degeneracy of vacuum”. As a consequence,
only rough (counting-type) estimates can be provided for the partition func-
tions Ẑη

∞,i .

Lemma 8.5. There are constants c7, c
′
7 > 0 (c7 ↓ 0 if β → ∞) such

that for any n-aggregate Kη
n,α, one has the bound

log Ẑη
n,α � c7|∂Kη

n,α| (72)

For any corner aggregate Kη
∞,i ,

log Ẑη
∞,i � c

′
7l

2
∞ (73)
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9. ASYMPTOTIC TRIVIALITY OF THE CONSTRAINED GIBBS

MEASURE ν
η
�

As the first application of expansion (71) we prove that the weak limit
of the constrained measure νη� coincides with the ‘+’ phase Gibbs measure
µ+, finishing the first part of our program.

Proposition 9.1. There exists a constant c>0 such that for any β�
l0β6 (with the β6 the same as in Proposition 8.4), any η∈�∗∗, and X⊂Z

2

finite,

‖νη�(N)−µ+‖X=O(e−cN ) (74)

In particular, limN→∞ ν
η

�(N)=µ+, P -a.s.

Proof. The idea of the proof is to express the expectation ν
η

�(N)(f )

of any local function f as the sum of a convergent series by using the
multi-scale scheme developed in the last section, and to compare the series
with a standard cluster expansion for νη≡+1

�(N) . The difference between both
series is given in terms of clusters both touching the boundary and the
dependence set of f . Restricting only to the boundary conditions η∈�∗∗
and volumes �(N), N �N∗∗(η) and using the exponential decay of the
cluster weights, we prove the exponential convergence νη�(N)(f )→ν+(f ).

For notational simplicity, we only restrict to a special case and give a
proof of the equality

lim
�
ν
η
�(σ0 =−1)=µ+(σ0 =−1) (75)

The general case goes along the same lines.
Assuming σ ∈�+

�, observe that σ0 =−1 if and only if the set D�(σ)

contains an odd number of contours  such that 0∈ Int(). In an analogy
with (19), we write the νη�-probability that σ0 =−1 in the form

ν
η
�(σ0 =−1)= 1

Zη
�

∑

���

Zη
�(\�)

∏

∈�
ρη() (76)

where we have used the shorthand ��� for any compatible family of
contours in � such that card(�) is an odd integer and 0∈ Int for every
∈�. Furthermore, Zη

�(\�) is the partition function

Zη
�(\�)= exp (−Eη�(∅))

∑

∂∈D�(\�)

∏

∈∂
ρη() (77)
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of a polymer model over the restricted ensemble K�(\�)⊂K� of all con-
tours  such that (i) ∼�, and (ii) 0 �∈ Int(). We can now repeat the same
procedure as in the last sections, but with the contour ensemble K� being
replaced by Kη(\�). A crucial observation is that all contours from the set
Kη \Kη(\�) are balanced, at least for all η∈�∗∗ and provided that the vol-
ume �(N) is large enough. Hence, the sets of unbalanced contours coincide
for both contour ensembles Kη and Kη(\�), hence, the same is true for the
collections of both n- and corner aggregates. Finally, we compare the terms
in the expansions for Zη

� and Zη
�(\�), and arrive at the formula

log
Zη
�(\�)
Zη
�

=−
∑

C∈C
η

0\Cη0(\�)
φ
η

0 (C) −
∑

n�1

∑

D∈D
η
n\Dη

n(\�)
ψηn (D)

−
∑

D∈D
η
∞\Dη

∞(\�)
ψ
η
∞(D) (78)

where each of the three sums runs over all (0-, n-, or ∞-)clusters that are either
incompatible with� or contain a contour , 0∈ Int(). By construction, each
n-, respectively ∞-cluster is further required to be incompatible with an n-,
respectively corner aggregate, and since their weights are uniformly exponen-
tially bounded by Propositions 8.3 and 8.4, we get the uniform upper bound

sup
�

∣∣∣∣log
Zη
�(\�)
Zη
�

∣∣∣∣�c|�| (79)

with a constant c large enough, as well as the existence of the limit

lim
�

log
Zη
�(\�)
Zη
�

=−
,∑

C

φ0(C) (80)

where the sum runs over all finite 0-clusters in Z
2 that are either incompatible

with� or contain a contour surrounding the origin.
Since every ∈� surrounds the origin, it is necessarily balanced and satisfies
ρη()� exp(− 2β

l0
||). Combined with (79) and (80), one easily checks that

lim
�
ν
η
�(σ0 =−1)=

∑

��Z2

exp

(
−

,∑

C

φ0(C)

)
∏

∈�
ρ() (81)

and the convergence is exponentially fast. Obviously, the right-hand side
coincides with the limit lim� µ

η≡+1
� (σ0 =−1)=µ+(σ0 =−1), which finishes

the proof.
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10. RANDOM FREE ENERGY DIFFERENCE

In this section we analyze the limit behavior of the sequence of the
random free energy differences

F
η
�= log Zη

�− log Z−η
� (82)

In order to show that the probability that Fη� takes a value in a fixed finite
interval is bounded as O(N− 1

2 +α) with α>0, we can use the local central
limit upper bound proven in Appendix B, provided that a Gaussian-type
upper bound on the characteristic functions of the random variables Fη�
can be established. The basic idea is to prove the latter by employing the
sequential expansion for log Zη

� developed in Section 8 and by computing
the characteristic functions in a neighborhood of the origin via a Mayer
expansion. However, a technical problem arises here due to the high prob-
ability of the presence of corner aggregates. That is why we need to split
our procedure in two steps that can be described as follows.

In the first step, we fix the boundary condition in the logarithmic
neighborhood of the corners and consider the random free energy differ-
ence F

η
� conditioned on the fixed configurations. For this conditioned

quantity a Gaussian upper bound on the characteristic function can be
proven, implying a bound on the probability that the conditioned free
energy difference P -a.s. takes a value in a scaled interval (aNδ, bNδ). This
can be combined with a Borel–Cantelli argument to exclude all values in
such an interval, at least P -a.s. and for all but finitely many volumes from
a sparse enough sequence of volumes.

In the second step, we consider the contribution to the free energy
difference coming from the corner aggregates. However, their contribution
to the free energy will be argued to be of a smaller order when compared
with the contribution of the non-corner terms.

Note that we also include the ∞-clusters in the first step. Because we have
uniform bounds in η for the ∞-cluster weights, we are allowed to do so.

The free energy difference Fη� can be computed by using the sequen-
tial expansion (71). For convenience, we rearrange the terms in the expan-
sion by introducing

Uη(B) =
∑

n

∑

α

log Ẑη
n,α1{Dom(Kη

n,α)=B} +
∑

i

log Ẑη
∞,i1{Dom(Kη

∞,i )=B}

+
∑

C

φ
η

0 (C)1{Dom(C)=B} +
∑

n

∑

D

ψηn (D)1{Dom(D)=B}

+
∑

D

ψ
η
∞(D)1{Dom(D)=B} (83)
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for any set B ⊂ ∂�. Note that any function Uη(B) only depends on the
restriction of η to the set B. Using the notation Ūη(B)=Uη(B)−U−η(B),
the expansion for the free energy difference Fη� reads, formally,

F
η
�=2β

∑

x∈∂�
ηx +

∑

B⊂∂�
Ūη(B) (84)

Obviously, no bulk contours contribute to Ūη(B). Using the notation
∂�C,i :={y∗ ∈∂� : d[y∗, x∗

C,i ]�2l∞} and ∂�C :=∪4
i=1∂�C,i , we consider the

decomposition F
η
�= F̃ η�+ F̂ η�, where

F̃
η
�=2β

∑

x∈∂�\∂�C
ηx +

∑

B⊂∂�
Dom(B)�⊂∂�C

Ūη(B) (85)

and

F̂
η
�=2β

∑

x∈∂�C
ηx +

∑

B⊂∂�
Dom(B)⊂∂�C

Ūη(B) (86)

The first term, F̃ η(B), can be analyzed by means of the Mayer expansion
of its characteristic function

�̃
η
�(t) := E[exp(itF̃ η�) |η∂�C ]=E



exp



2itβ
∑

x∈∂�\∂�C
ηx





×
∑

B

∏

B∈B
(eitŪ

η(B)−1)
∣∣∣η∂�C





= [�0(t)]
|∂�\∂�C | ∑

B
wt(B |η∂�C ) (87)

where we have assigned to any family B of subsets of the boundary the weight

wt(B |η∂�C ) = 1
[�0(t)]|∂�\∂�C | E



exp



2itβ
∑

x∈∂�\∂�C
ηx





×
∏

B∈B
(eitŪ

η(B)−1)
∣∣∣η∂�C





×1{∀B∈B:B �⊂∂�C } (88)

and have introduced the notation
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�0(t)=E[exp(2itβη0)]= cos 2tβ (89)

Observing that

w(B1 ∪B2 |η∂�C )=w(B1 |η∂�C )w(B2 |η∂�C ) (90)

whenever B1 ∩B2 =∅ for any B1 ∈B1 and B2 ∈B2, the last sum in Eq. (87)
is a partition function of another polymer model and using the symbols
B,B1, . . . for the clusters in this model and wTt for the cluster weights,
we get

�̃
η
�(t)= [�0(t)]

|∂�\∂�C | exp

[
∑

B
wTt (B |η∂�C )

]
(91)

A crucial observation is that for any η ∈ �∗∗ and �(N), N �N∗∗(η) no
corner aggregate contributes to the weight wt(B) for any B. On the other
hand, the partition function of any n-aggregate is balanced by a small
probability of the aggregate to occur. Another observation is that every
weight wt(B) is of order O(t2) due to the symmetry of the distribution P .
To see this explicitly, formula (88) can be cast into a more symmetrized
form,

wt(B |η∂�C ) = 1
[�0(t)]|Supp(B)| E



T




t



2β
∑

x∈Supp(B)
ηx + 1

2

∑

B∈B
Ūη(B)










×
∏

B∈B
2i sin

(
tŪ η(B)

2

)
|η∂�C



 (92)

where Supp(B) :=∪B∈BB and

T {Y } :=
{
i sinY if card(B)=2k−1
cosY if card(B)=2k, k∈N

(93)

In Section 11.5 we give a proof of the following upper bound on the cor-
responding cluster weights:

Lemma 10.1. There exist constants β8, l0>03 such that for any β�
β8l0 there is t0 = t0(β)>0 for which the following is true. For any η∈�∗∗
and �=�(N), N �N∗∗(η), the inequality

3Recall that the construction of aggregates depends on the choice of l0.
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sup
x∗∈∂�\∂�C

∑

B:x∗∈Supp(B)
|wTt (B |η∂�C )|�

1
2
β2t2 (94)

is satisfied for all |t |�t0.

With the help of the last lemma, it is easy to get an upper bound on
�̃
η
�(t):

Lemma 10.2. Under the assumptions of Lemma 10.1, we have

�̃
η
�(t)� exp

(
−1

2
β2t2|∂�(N)\ ∂�C(N)|

)
(95)

for all |t |�t0, η∈�∗∗, and N �N∗∗(η).

Proof. It immediately follows by combining Lemma 10.1, Eq. (91),
and the bound �0(t)� exp[−β2t2].

For the corner part F̂ η� of the free energy difference we use the next
immediate upper bound:

Lemma 10.3. Given η ∈ �∗∗ and β � β6l0, then F̂
η

�(N) = O(Nδ) for
any δ>0.

Proof. Using Proposition 8.4 and Lemma 8.5, we have
∑
B⊂∂�C

|Ūη(B)|=O(l2∞) and the above claim immediately follows.

Proof of Proposition 3.5. Combining Lemma 10.2 with Proposi-
tion B.1 in Appendix B, we get

lim
N→∞

N
1
2 −αP

{
|F̃ η�(N)|�Nατ

∣∣η∂�C
}
<∞ (96)

for any α, τ > 0. By Lemma 10.3, F̃ can be replaced with the full free
energy difference F . As a consequence,

lim
N→∞

N
1
2 −αP {|Fη�(N)|�τ }<∞ (97)

and the proof is finished by applying Proposition 9.1.

11. PROOFS

In this section, we collect the proofs omitted throughout the main text.
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11.1. Proof of Proposition 7.5

In order to get the claimed exponential upper bound on the probability
for an n-aggregate to occur, we need to analyze the way how the aggregates
are constructed in more detail. We start with an extension of Definition 7.2.
Throughout the section, a finite volume �=�(N) is supposed to be fixed.

Definition 11.1. For every n= 1,2, . . . , any maximal Ln-connected
subset �⊂K \ (Kη

0 ∪Kη

1 ∪ . . .∪Kη

n−1) is called an n-pre-aggregate.

Obviously, n-aggregates are exactly those n-pre-aggregates � that sat-
isfy the condition |∂�|con�ln. Moreover, every n-pre-aggregate can equiva-
lently be constructed inductively by gluing pre-aggregates of lower orders:

Lemma 11.2. Every n-pre-aggregate �n is the union of a family of
(n−1)-pre-aggregates, �n=∪α�αn−1. Moreover,

(i) Each (n−1)-pre-aggregate �α
n−1 satisfies |∂�α

n−1|con>ln−1,

(ii) The family (�α
n−1)α is Ln-connected.

Proof. For n=1 the statement is trivial.
Assume that n � 2, and let �n be an n-pre-aggregate and  ∈ �n

be a contour. Then, there exists an (n− 1)-pre-aggregate �α
n−1 such that

 ∈�α
n−1 (otherwise  would be an element of a k-aggregate, k�n− 2).

Moreover, since �α
n−1 is not an (n− 1)-aggregate by assumption, it satis-

fies |∂�α
n−1|con>ln−1, proving (i).

The claim (ii) is obvious.

Lemma 11.3. Let � by any family of unbalanced contours. Then,

(i) There exists a subset �̃⊂� such that

(a) ∂�̃= ∂�,
(b) if 1,2,3 ∈ �̃ are any three mutually different contours,
then ∂1 ∩ ∂2 ∩ ∂3 =∅.

(ii) The inequality

∑

x∈∂�
ηx <−

(
1− 4

l0

)
|∂�| (98)

holds true.

Proof. (i) Assume that 1,2,3 ⊂� is a triple of mutually different
contours such that ∂1 ∩∂2 ∩∂3 �=∅. Since ∂i , i=1,2,3 are connected
subsets of ∂�, it is easy to realize that, up to a possible permutation of
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the index set {1,2,3}, one has ∂1 ⊂ ∂2 ∪ ∂3. Hence, ∂(� \ {1})= ∂�.
Since the set � is finite, a subset �̃⊂� with the claimed property is con-
structed by iterating the argument.

(ii) Let �̃⊂� be the same as in (i). Then, using Lemma 5.2, the
inclusion-exclusion principle implies

∑

x∈∂�
ηx =

∑

∈�̃

∑

x∈∂
ηx −

∑

(,′)⊂�̃

∑

x∈∂∩∂′
ηx

< −
(

1− 2
l0

)∑

∈�̃
|∂|+

∑

(,′)⊂�̃
|∂∩ ∂′| (99)

� −
(

1− 4
l0

)
|∂�|

It remains to prove that one still gets a large deviation upper bound
by replacing the sum over the boundary sites x ∈ ∂� in Eq. (98) with the
sum over all x ∈Con(∂�), provided that � is a pre-aggregate. Technically,
we need to exploit the basic feature of any pre-aggregate � that the set
Con(∂�)\∂� is not “too big”. A minor complication lies in the fact that
the boundary distance d[∂γ, ∂γ ′] is allowed to exceed the contour distance
d[γ, γ ′]. To overcome this difficulty, it is useful to define

C̃on(∂�)= ∂�∪
{
x ∈Con(∂�); ∀γ ∈� : d[x, ∂γ ]>

|∂γ |
l0

}
(100)

for which the first equation in the proof of Lemma 5.2 implies the upper
bound

|∂�|con�
(

1+ 2
l0

)
|C̃on(∂�)| (101)

We are now ready to prove the following key estimate from which
Proposition 7.5 immediately follows by using a large deviation upper
bound.

Lemma 11.4. Let � be an n-pre-aggregate, n=1,2, . . . Then,

∑

x∈Con(∂�)

ηx�− 1
3
|∂�|con (102)

uniformly in n.

Proof. We prove by induction in the order of the pre-aggregates the
refined bound
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∑

x∈C̃on(∂�)

ηx�−
(

1−3
n∑

i=1

Li

li−1

)
|C̃on(∂�)| (103)

for any n-pre-aggregate �, from which the statement follows by using
the definition 7.1 of length scales ln and Ln, and Eq. (101). Indeed, one
obtains then

∑

x∈Con(∂�)

ηx � −
(

1−3
∞∑

i=1

Li

li−1

)
|C̃on(∂�)|+ |Con(∂�)\ C̃on(∂�)|

(104)

� −
(

1
4

− 2
l0

) |∂�|con

1+ 2
l0

�− 1
3
|∂�|con

First, assume that � is a 1-pre-aggregate, and let �=∪m
i=1Ai be the

(unique) decomposition of � into disjoint subsets such that ∂�=∪m
i=1∂Ai

is the decomposition of ∂� into maximal connected components. For
convenience, we use the notation Ji := ∂Ai . Considering furthermore the
decomposition C̃on(∂�) \ ∂�= ∪m−1

k=1 Gk into maximal connected compo-
nents, the set C̃on(∂�) can be finally written as the union

C̃on(∂�)=
(
m⋃

i=1

Ji

)
⋃
(
m−1⋃

k=1

Gk

)
(105)

of disjoint connected subsets, which satisfy the inequalities |Ji |> l0 and
|Gk|�L1, for all i, k= 1,2, . . . Using Lemma 11.3, we have

∑
x∈Ji ηx� −(

1− 4
l0

)
|Ji |, and since

∑m−1
k=1 |Gk|�L1

l0

∑m
i=1 |Ji |, we finally get

∑

x∈C̃on(∂�)

ηx =
m∑

i=1

∑

x∈Ji
ηx +

m−1∑

k=1

|Gk|�−
(

1− L1 +4
l0

) |C̃on(∂�)|
1+ L1

l0

(106)

� −
(

1− 3L1

l0

)
|C̃on(∂�)|

provided that, say, L1 �4.
Next, we will prove the statement for an arbitrary n-pre-aggregate �. By

Lemma 11.2,� is the union of a family of (n−1)-pre-aggregates,�=∪i�in−1.
In order to generalize our strategy used in the n=1 case, we consider the (pos-
sibly disconnected) boundary sets Ji = C̃on(∂�i

n−1), and the family of con-
nected sets (Gi)i=1,2,... defined as the maximal connected components of the
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set Con(∂�) \ ∪i Con(�i
n−1). Note that #{Gi} = #{Ji} − 1 and the identity

C̃on(�)= (∪iJi)∪ (∪iGi). Hence, by using the induction hypothesis,

∑

x∈C̃on(∂�)

ηx =
m∑

i=1

∑

x∈Ji
ηx +

m−1∑

k=1

|Gk|�
[
−
(

1−3
n−1∑

i=1

Li

li−1

)
+ Ln

ln−1

]
|C̃on(∂�)|

1+ Ln
ln−1

(107)

� −
(

1−3
n∑

i=1

Li

li−1

)
|C̃on(∂�)|,

as required.

11.2. Proof of Proposition 8.3

The proof goes by induction in the order of aggregates.
The case n= 1. As the initial step we bound the sums over 1-clus-

ters in D
η

1. Recall that the 1-clusters consist of 0-clusters which connect
1-aggregates Kη

1,α. Throughout this section we use the shorthand β̃ := β
l0

.

From Proposition 5.4 we know that for any integer r0,
∑

C∈C
η
0 : |C|�r0
C�x

|φη0 (C)| exp (β̃(2− (1/8))|C|)�1

which implies
∑

C∈C
η
0 : |C|�r0
C�x

|φη0 (C)| exp (2β̃(1− (1/8))|C|)� exp (−β̃r0/8) (108)

We split the procedure into four steps as follows.
Part 1. For any 1-cluster in D

η

1, none of its 0-clusters contributes to
the dressed weight of a 1-aggregate. Hence, all these 0-clusters have at least
size L1. Moreover, they are incompatible with a 1-aggregate Kη

1,α. Using
Lemma 5.2 and choosing r0 =L1 in (108), this results in the inequality

∑

C∈C
η
0

C �∼Kη1,α

|φη0 (C)| exp (2β̃(1− (1/8))|C|)� l21 exp
[
−(β̃L1)/8

]
�2−2 (109)

Part 2. In order to prove the convergence of the cluster expansion
resulting from the Mayer expansion, we apply Proposition A.2. As our ini-
tial estimate, we get, using (109) and since
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C
1
�↔C′ ⇔ ∃α such that C,C′ �∼Kη

1,α

the inequality
∑

C∈C
η
0

C
1↔C0

|φη0 (C)| exp (2β̃(1− (1/8))|C|)

�
∑

Kη

1,α : Kη

1,α �∼C0

∑

C∈C
η
0

C �∼Kη1,α

exp (2β̃(1− (1/8))|C|)|φη0 (C)| (110)

�2−2#{Kη

1,α �∼C0}

Part 3. Using Lemma 8.2, the weight of any set of 0-clusters appear-
ing in the Mayer expansion is bounded as

|wη1(C)|�
∏

C∈C
(e|φ

η

0 (C)| −1)�
∏

C∈C
2|φη0 (C)|

Hence, by using Proposition A.2, we obtain the bound
∑

C1
1
�↔C0

C1∈D
η
1

|ψη1 (C1)| exp [(2β̃(1− (1/8))−1/2)|C1|]�2−1#{Kη

1,α �∼C0} (111)

Taking now C0 ∈C
η

0 such that Kη

1,α is the only 1-aggregate satisfying C0 �

Kα
1 , inequality (111) yields

∑

C1 �∼Kη1,α
C1∈D

η
1

|ψη1 (C1)| exp [(2β̃(1− (1/8))−1/2)|C1|]�2−1 (112)

Part 4. In order to bound the sum over all 1-clusters C1 ∈D
η

1 such
that C1 �x and |C1|� r1, we use that |C1|�L1 and write

∑

C1�x, |C1|�r1
C1∈D

η
1

|ψη1 (C1)| exp [(2β̃(1− (1+1/2)/8)−1/2)|C1|]

�
∑

Kη

1,α

∑

C1 �∼Kη1,α : C1�x
|C1|�r1, C1∈D

η
1

|ψη1 (C1)| exp [(2β̃(1− (1+1/2)/8)−1/2)|C1|]

(113)
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Substituting (112), we obtain

(113) �
∑

Kη

1,α

2−1 exp (−(β̃/8) ·max [d(Kη

1,α, x), r1])

�
∞∑

R=0

∑

Kη

1,α : d(Kη

1,α,x)=R
2−1 exp (−εβ̃ ·max [R, r1]) (114)

The last sum can be estimated by a partial integration and we finally get

(113)� exp (−β̃r1/8)
[
r2

1 + 16r1
β̃

+2
]

�2−1 ·4r2
1 exp (−β̃r1/8)

where we have used that r1 �L1 and that L1 is large enough.
Induction step. The induction hypothesis reads

∑

Ci�x: |Ci |�ri
Ci∈D

η
i

|ψηi (Ci)| exp







2β̃



1−
i+1∑

j=0

(1/2)j /8



−
i∑

j=1

(1/2)j



 |Ci |




�4 ·2−i r2
i exp (−β̃(1/2)i+1ri/8) (115)

for any 1�i�n−1.
Part 1. As in part 1 of the n=1 case, we want to prove first that

∑

C∈C
η
n−1

C �∼Kηn,α

|φη
n−1(C)| exp







2β̃



1−
n∑

j=0

(1/2)j /8



−
n−1∑

j=1

(1/2)j



 |C|


�2−n−1

(116)

Recalling definition (58) for φη
n−1(C), we know that φη

n−1(C)=ψηj (C) for
any C ∈D

η
j . Hence, using (115) with ri =Ln, we write

(116) � l2n

n−1∑

i=1

∑

Ci�x: |Ci |�Ln
Ci∈D

η
i

|ψηi (Ci)| exp







2β̃



1−
n∑

j=0

(1/2)j /8



−
n−1∑

j=1

(1/2)j



 |Ci |




� 4l2nL
2
n

n−1∑

i=0

2−i exp







−β̃
n∑

j=i+1

(1/2)j /4−
n−1∑

j=i+1

(1/2)j



Ln





� 2−n−1 ·32l2nL
2
n exp

[
−β̃(1/2)nLn/4

]
�2−n−1 (117)
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where we have used that ln = exp (Ln/2n) and β̃ is large enough. This
proves inequality (116).

Part 2. Similarly as in then=1 case, we prove by using (116) the inequality

∑

C
n
�↔C0

C∈C
η
n−1

|φη
n−1(C)| exp







2β̃



1−
n∑

j=0

(1/2)j /8



−
n−1∑

j=1

(1/2)j



 |C|




�2−n−1#{Kη
n,α �∼C0}

Part 3. By construction, any n-cluster Cn∈D
η
n consists of a family of

0-clusters C0 ∈C
η

0 and i-clusters C1 ∈D
η

0, 0�i�n−1, which are all incom-
patible with Kη

n. Using Lemma 8.2 again, we have the upper bound

|wηn(Cn)|�
n−1∏

i=0

∏

C∈Cn∩D
η
i

2|ψηi (C)|

where we have identified ψ
η

0 (.)≡φη0 (.) and D
η

0 ≡C
η

0. Applying Proposition
A.2 with z(C)=2|ψηi (C)| then gives

∑

Cn
n
�↔C0

Cn∈D
η
n

|ψηn (Cn)| exp







2β̃



1−
n∑

j=0

(1/2)j /8



−
n∑

j=1

(1/2)j



 |C|




�2−n#{Kη
n,α �∼C0}

Taking again C0 ∈C
η

0 such that Kη
n,α �∼C0 implies the inequality

∑

Cn �∼Kηn,α
Cn∈D

η
n

|ψηn (Cn)| exp







2β̃



1−
n∑

j=0

(1/2)j /8



−
n∑

j=1

(1/2)j



 |Cn|


�2−n

(118)

Part 4. Repeating the argument for then=1 case, we obtain the inequality

∑

Cn�x, |Cn|�rn
Cn∈D

η
n

|ψηn (Cn)| exp







2β̃



1−
n+1∑

j=0

(1/2)j /8



−
n∑

j=1

(1/2)j



 |Cn|




�2−n ·4r2
n exp (−(1/2)n+1β̃rn/8) (119)
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Using that rn�Ln for any Cn∈D
η
n and choosing rn=Ln proves the prop-

osition for the weights ψηn , n=1,2, . . .
Equation (58) reads thatφηn(C)=ψηj (C)wheneverC∈D

η
j and j�n. Using

further that C
η
n=C

η

0 ∪D
η

1 ∪· · ·∪D
η
n and summing up the cluster weights of the

clusters of all orders yields inequality (64), which finishes the proof.

11.3. Proof of Proposition 8.4

Let n0 be the same as in Section 8.3. Due to the second part of Prop-
osition 8.3,

sup
x

∑

C�x, |C|�r0
C∈C

η
n0

|φηn0
(C)| exp [(β/4l0)] |C|�2 exp (−(3β/4l0)r0)

According to the definition of the corner-aggregates, we have
∑

C �∼K∞,i

C∈C
η
n0

|φηn0
(C)| exp [(β/4l0)|C|]�2l2∞ exp (−l∞(3β/2l0))�2−3 exp (−l∞(β/l0))

Applying Proposition A.2, we obtain
∑

C �∼K∞,i

C∈D
η∞

|ψη∞(C)| exp [(β/4l0)] |C|�2−2 exp (−l∞(β/l0))

which implies
∑

D∈D
η
∞

|ψη∞(D)|� exp (−(3β/2l0)l∞)

11.4. Proof of Lemma 8.5

Let η∈�∗∗ and Kη
n,α be an n-aggregate, n=1,2, . . . Recall that

Ẑη
n,α =

∑

∂∈Dη
n,α

ρ̂η(∂) (120)

where

ρ̂η(∂)=
∏

∈∂
ρη() exp



−
∑

C∈C
η
n−1

C �∼∂; |C|<Ln

φ
η

n−1(C)



 (121)
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Using the η-uniform bounds

ρη()� exp[−2β(||− |∂|)] (122)

and

sup
x�

∑

C∈C
η
n−1

x�∈C

|φη
n−1(C)|� exp

[
−3β
l0

]
(123)

for all n= 1,2, . . . , one can subsequently write (for simplicity, we use the
shorthand ε= exp

[− 3β
l0

] below):

Ẑη
n,α�

∑

∂∈Dη
n,α

∏

∈∂
exp[−(2β− ε)||+2β|∂|]

� e(ε+4e−2β+ε)|∂Kη
n,α |

∑

∂∈Dη
n,α

∏

∈∂
exp[−(2β− ε)||+ (2β− ε−4e−2β+ε))|∂|]

� e(ε+4e−2β+ε)|∂Kη
n,α |

∑

∂∈Dη
n,α

∏

∈∂

∏

γ∈
exp[−(2β− ε)|γ |+ (2β− ε−4e−2β+ε)|∂γ |]

� e(ε+4e−2β+ε)|∂Kη
n,α |
{

1+
∑

γ�p
exp[−(2β− ε)|γ |+ (2β− ε−4e−2β+ε))|∂γ |]

}|∂Kη
n,α |

(124)

where the last sum runs over all pre-contours (= connected components of
contours) such that a fixed dual bond p=〈x, y〉�, d(x,�c)=d(y,�c)=1 is
an element of γ and it is the leftmost bond with these properties, w.r.t. a
fixed orientation on the boundary. To estimate this sum, we associate with
each pre-contour γ a path (= sequence of bonds; not necessarily unique)
starting at p. Every such a path consists of steps choosing from three of
in total four possible directions. One easily realizes that, for every such a
path, the total number of steps to the right is bounded from below by
|∂γ |. Hence, the last sum in (124) is upper-bounded via the summation
over all paths started at p, so that to each step going to the right (respec-
tively to the left/up/down) one assigns the weight e−4e−2β+ε

(respectively
e−2β+ε), which yields

∑

γ�p
exp[−(2β− ε)|γ |+ (2β− ε−4e−2β+ε))|∂γ |]

�e−2β+ε
∞∑

n=1

(
2e−2β+ε+ e−4e−2β+ε)n�2e−2β+ε (125)
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All in all, one obtains

Ẑη
n,α�e(ε+6e−2β+ε)|∂Kη

n,α | (126)

proving the first part of the statement.
The proof of the second part is trivial by counting the number of

all configurations in the square volume with side 2l∞. Note that the lat-
ter contains all contours  ∈ ∂ for any configuration ∂ ∈ Dη

∞,i and that
the weights of all clusters renormalizing the contour weights are summable
due to Proposition 8.3.

11.5. Proof of Lemma 10.1

Due to Proposition A.2, it is enough to show that the inequality

∑

B:x∗∈Supp(B)
|wt(B |η∂�C )| exp

(
1
2
β2t2|Supp(B)|

)
�1

2
β2t2 (127)

holds true for all |t |�t0, with a constant t0>0. Remark that the RHS of
the last equation is not optimal and can be improved, as obvious from the
computation below.

In order to prove (127), we use the symmetric representation (92) of
the weight wt(B |η∂�C ), the lower bound �0(t)�e−α which is true for any
α>0 provided that |t |�t1(α) with a constant t1(α)>0, and the estimate

∣∣∣∣∣∣
T




t



2β
∑

x∈Supp(B)
ηx + 1

2

∑

B∈B
Ūη(B)










∣∣∣∣∣∣

�










t

[
2β
∑

x∈B
|ηx |+ 1

2
|Ūη(B)|

]
for B ={B}

1 otherwise

(128)

which will be enough in order to get the t2 factor in what follows.
Using Proposition 8.3 and Lemma 8.5, we get a uniform upper bound
|Ūη(B)|�c|B| with a constant c > 0 such that c ↓ 0 for β ↑ ∞. Hence, in
the case B ={B} we have

|wt(B = {B}) |η∂�C |

� eα|B|t2E

[(
2β
∑

x∈B
|ηx |+ 1

2

∑

B∈B
|Ūη(B)|

)
∏

B∈B
|Ūη(B)|

∣∣∣η∂�C

]
(129)

� eα|B|t2
(

2β+ c

2

)
|B|E

[
|Ūη(B)| ∣∣η∂�C

]
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Note that the above uniform upper bound on |Ūη(B)| is not sufficient to
get a sensible estimate on the conditional expectation. However, a more
detailed upper bound can be obtained. Without loss of generality, we can
assume that B∩∂�C=∅, so that the conditioning on η∂�C can be omitted.
First, assume there is an aggregate4 Kη

α such that Dom(Kη
α)= B. Then,

Lemma 8.5 gives the estimate log Ẑη
α�c7|B| and, since |∂Kη

α|� |B|/2, Prop-
osition 7.5 reads that the probability of such an event is bounded by
exp(− c5

2 |B|). Second, assume there is a family of aggregates (Kη
αi )i (of

possibly different orders) such that Dη :=∪iDom(Kη
αi )⊂B. Then, any clus-

ter C such that Dom(C)=B has the length |C| � |B \Dη| and Proposi-
tion 8.3 gives the estimate

∑

C∈∪nC
η
n

Dom(C)=B

|φηn |� exp
(

− β

2l0
|B \Dη|

)

Moreover, the probability that Dη =D for a fixed set D is bounded by
e−

c5
2 |D|. Note, however, that the above two scenarios are possible only pro-

vided that |B| � l1, otherwise we only get a contribution from 0-clusters,

the sum of which is bounded by e
− β

2l0
|B|

. All in all, we obtain

E [|Uη(B)|] � c7|B| e− c5
2 |B|1|B|�l1 + e−

β
2l0

|B| +1|B|�l1
∑

D⊂B
e
− c5

2 |D|− β
2l0

|B\D|

� e
− β

2l0
|B| +1|B|�l1(c7 +1)|B| e− c5

4 |B| (130)

provided that β/l0 is large enough. Recall that c5 does not depend on l0,
which means that the latter can be adjusted as large as necessary. Using
the same argument for U−η(B) and substituting (130) into (129), we get

∑

B�x
B⊂∂�

|wt(B = {B}) |η∂�C )| eτ |B|�2 · t2(2β+ c

2
)
∑

B�x
B⊂∂�

|B| e(τ+α)|B|

×
[
e
− β

2l0
|B| +1|B|�l1(c7 +1)|B| e− c5

4 |B|
]

�τ ′βt2 (131)

which is true for any τ ′>0 provided that τ and α are chosen sufficiently
small and l0 (and hence l1) sufficiently large. This argument can easily be
generalized by taking into account all collections B, card(B) > 1. Hence,
the proof of (127) is completed by choosing τ = 1

2β
2t2, under the condi-

tion |t |� t0 with t0 = t0(β) being small enough.

4For simplicity, we suppress the subscript n here.
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12. CONCLUDING REMARKS AND SOME OPEN QUESTIONS

Our result that a typical boundary condition (w.r.t. a symmetric dis-
tribution) suppresses both mixed and interface states explains why these
states are typically not observed in experimental situations without a spe-
cial preparation. To a certain extent it justifies the standard interpretation
of extremal invariant Gibbs measures as pure phases.

Although this result, which finally solves the question raised in ref.
39, is only about the two-dimensional Ising ferromagnet, and thus seem-
ingly of limited interest, it is our opinion that the perturbation approach
developed in the paper is actually very robust (compare ref. 24). As we
have observed at various points in the paper, there seems to be no bar-
rier except some technical ones to extend the analysis to the Ising model
with random boundary conditions in higher dimensions. In fact, there
might be extensions of our approach into various different directions. In
particular, both the random distribution of the boundary terms and the
phase transition itself could lack the plus–minus symmetry, and one might
also consider a more general Pirogov–Sinai set-up in which the number
of extremal Gibbs measures could be larger than two. Another possible
extension could be to finite-range Hopfield-type models, in which peri-
odic or fixed boundary conditions lack a coherence property with respect
to the possible Gibbs measures, and thus are expected to behave as ran-
dom ones.(44) Actually, our result can be translated in terms of the Mattis
(= single-pattern Hopfield) model with fixed boundary conditions, proving
the chaotic size-dependence there.

More generally, in principle the phenomenon of the exclusion of inter-
face states for typical boundary conditions might well be of relevance for
spin glass models of Edwards–Anderson type, which has indeed been one
of our main motivations. Our result illustrates in a simple way how the
Newman–Stein metastate program, designed for the models exhibiting the
chaotic size-dependence, can be realized. The number of states, as well as
the number of “physically relevant” states for short-range spin glasses has
been an issue of contention for a long time. In this paper, we have pro-
vided a very precise distinction between the set of all Gibbs states, the
set of all extremal Gibbs measures, and the set of “typically visible” ones,
without restricting a priori to the states with a particular symmetry. We
hope the provided criterion might prove useful in a more general context.

We mention that the restriction to sparse enough sequences of vol-
umes is essential to obtain almost sure results. Actually, for a regular
sequence of volumes, we expect all mixtures (in dimension three all trans-
lation-invariant Gibbs measures) to be almost sure limit points, although
in a null-recurrent way. This still would mean that the metastate would not
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be affected, and that it would be concentrated on the plus and minus mea-
sures. See also the discussion in ref. 16. However, proving this conjecture
goes beyond the presented technique and remains an open question.
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APPENDIX A. CLUSTER MODELS

In this section we present a variant of the familiar result on the con-
vergence of the cluster expansion for polymer models, which proves useful
in the cases when the summation over polymers becomes difficult because
of their high geometrical complexity. Such a situation arises, for example,
in the applications of the cluster expansion to the study of the conver-
gence of high-temperature (Mayer) series in lattice models with an infinite-
range potential. Since the Mayer expansion techniques are by no means
restricted to the high-temperature regimes (note e.g. its application in the
RG schemes for low-temperature contour models), the result below can be
applied in a wide class of problems under a perturbation framework. In
our context, we use the result to provide upper bounds on the weights ψηn
of n-clusters, see Section 11.2.

We consider an abstract cluster model defined as follows. Let G=
(S,�) be a finite or countable non-oriented graph and call its vertices
polymers. Any two polymers X�Y are called incompatible, otherwise they
are compatible, X∼Y . By convention, we add the relations X�X for all
X ∈ S. Any non-empty finite set �⊂ S is called a cluster whenever there
exists no decomposition �=�1 ∪�2 such that �1 and �2 are non-empty
disjoint sets of polymers and �1 ∼�2, where the latter means that X∼Y
for all X∈�1 and Y ∈�2. Let P(S) denote the set of all finite subsets of
S and C(S) denote the set of all clusters. A function g :P(S) �→C is called
a weight whenever

(i) g(∅)=1,

(ii) If �1 ∼�2, then g(�1 ∪�2)=g(�1) g(�2).
If the extra condition

(iii) g(�)=0 whenever there is an X∈� such that X��\ {X}

holds true, then we obtain the familiar polymer model. In the sequel we do
not assume Condition (iii) to be necessarily true, unless stated otherwise.
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Note a simple duality between the classes of polymer and cluster
models: Any cluster model over the graph G= (S,�) is also a polymer
model over the graph G′ = (C(S),�). The other inclusion is also trivially
true. A natural application of this duality is to the polymer models with a
complicated nature of polymers. Such polymers can often be represented
as clusters in a new cluster model with the polymers being simpler geo-
metric objects.

To any set A∈P(S) we assign the partition function Z(A) by

Z(A)=
∑

�⊂A
g(�) (A.1)

The map between the functions g and Z is actually a bijection and the
last equation can be inverted by means of the Möbius inversion formula.
In particular, we consider the function gT:P(S) �→C such that the Möbius
conjugated equations

logZ(A)=
∑

�⊂A
gT (�), gT (�)=

∑

A⊂�
(−1)|�\A| logZ(A) (A.2)

hold true for all A∈ P(S) and �∈ P(S), respectively. The function gT is
called a cluster weight, the name being justified by the following simple
observation:

Lemma A.1. For any cluster model, gT (�)=0 whenever � is not a
cluster.

A familiar result about the polymer model is the exponential decay
of the cluster weight gT under the assumption on a sufficient exponential
decay of the weight g, see refs. 29 and 35. We use the above duality to
extend this result to the cluster models, formulating a new condition that
can often be easily checked in applications.

Proposition A.2. Let positive functions a, b:S �→ R
+ be given such

that either of the following conditions is satisfied:

(1) (Polymer model)
Condition (iii) is fulfilled and5

sup
X∈S

1
a(X)

∑

Y�X

e(a+b)(Y )|g(Y )|�1 (A.3)

5We use the convention 0
0 =0 here.
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(2) (Cluster model)
There is z:S �→R

+ satisfying the condition

sup
X∈S

1
a(X)

∑

Y�X

e(2a+b)(Y )z(Y )�1 (A.4)

such that |g(�)|�∏X∈� z(X) for all �∈P(S).

Then,

sup
X∈S

1
a(X)

∑

��X

e
∑
Y∈� b(Y )|gT (�)|�1 (A.5)

Proof. (1) For the case of the polymer models, see ref. 29 or better
ref. 35 for the proof.

(2) To prove the statement for a cluster model, we represent it as a
polymer model over the graph (C(S),�) and make use of the above result.
Hence, it is enough to show the inequality

∑

�∈C(S)
��X

e
∑
Y∈�(a+b)(Y )|g(�)|�a(X) (A.6)

for all X∈S. Indeed, then one gets

∑

�∈C(S)
���0

e
∑
Y∈�(a+b)(Y )|g(�)|�

∑

Y∈�0

a(Y ) (A.7)

for all �0 ∈C(S) and the statement about the polymer models yields

∑

�∗∈C(C(S))
�∗

��0

e
∑
�∈�∗

∑
Y∈� b(Y )|gT (�∗)|�

∑

Y∈�0

a(Y ) (A.8)

where the sum on the LHS is over all clusters incompatible with �0 in the
polymer model with the set of polymers C(S). Since the weights gT (�) of
the clusters in the original cluster model are related to the cluster weights
gT (�∗) in the polymer model under consideration as

gT (�)=
∑

�∗: ∪�′∈�∗�′=�
gT (�∗) (A.9)

we immediately get
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∑

��X

e
∑
Y∈� b(Y )|gT (�)|�

∑

�∗∈C(C(S))
�∗

�X

e
∑
�∈�∗

∑
Y∈� b(Y )|gT (�∗)|�a(X) (A.10)

which is inequality (A.5).
Using the notation ẑ(X) := z(X) ea(X)+b(X) and

ZX(A)=
∑

�∈C(A)
��X

∏

Y∈�
ẑ(Y ) (A.11)

for any A ∈ P(S) and X ∈A, inequality (A.6) follows from the next two
lemmas.

Lemma A.3. The function ZX(A) satisfies the recurrence inequality

ZX(A)�ẑ(X) exp




∑

Y�X
Y∈A\{X}

ZY (A\ {X})



 (A.12)

Proof. For any cluster � we split � \ {X} into connected compo-
nents, i.e. a family of clusters (�j ), and subsequently write:

ZX(A) = ẑ(X)
∑

�∈C(A)
�⊂A\{X}

∏

j

∏

Y∈�j
ẑ(Y )

�ẑ(X)
∞∑

n=0

1
n!

∑

Y1,... ,Yn∈A\{X}
∀j : Yi�X

n∏

j=1

∑

�j⊂A\{X}
�j �Yj

∏

Y∈�j
ẑ(Y ) (A.13)

= ẑ(X)
∞∑

n=0

1
n!




∑

Y�X
Y∈A\{X}

ZY (A\ {X})





n

= ẑ(X) exp




∑

Y�X
Y∈A\{X}

ZY (A\ {X})





Lemma A.4. Assume that

∑

Y�X

ẑ(Y )ea(Y )�a(X) (A.14)
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Then

∑

Y�X

ZY (S)�a(X) (A.15)

Proof. We prove the inequality

ZX(A)�ẑ(X)ea(X) (A.16)

for all A∈P(S) and X∈A, by induction in the number of polymers in the
set A. Assuming that this bound is satisfied whenever |A|<n, we can esti-
mate ZX(A) for |A| = n by using Lemma A.3, condition (A.14), and the
induction hypothesis as follows:

ZX(A)� ẑ(X) exp

[
∑

Y�X

ẑ(Y )ea(Y )

]
� ẑ(X)ea(X) (A.17)

As the statement is obvious for |A|=1, the lemma is proven.

APPENDIX B. INTERPOLATING LOCAL LIMIT THEOREM

We present here a simple general result that can be useful in the sit-
uations where a full local limit theorem statement is not available due to
the lack of detailed control on the dependence among random variables
the sum of which is under consideration. For a detailed explanation of the
central and the local limit theorems as well as the analysis of character-
istic functions in the independent case, see e.g. ref. 13. Here, under only
mild assumptions, we prove an asymptotic upper bound on the probabili-
ties in a regime that interpolates between the ones of the central and the
local limit theorem. Namely, we have the following result that is a simple
generalization of Lemma 5.3 in ref. 16:

Proposition B.1. Let (Xn)n∈N be a sequence of random variables
and denote by ψn(t) the corresponding characteristic functions, ψn(t)=
E eitXn . If (An)n∈N, (δn)n∈N and (τn)n∈N are strictly positive sequences of
reals satisfying the assumptions

(i) lim n→∞An
∫ τn
−τn dt |ψn(t)|�2π

(ii) There is k>1 such that limn→∞ An

δkn τ
k−1
n

=0
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then

lim
n→∞

An

δn
P {aδn�Xn�bδn}�b−a (B.1)

for any a<b.

Remark B.2. Note that:

(1) Up to a normalization factor, Condition (i) of the proposition
only requires An to be chosen as

An=O
([∫ τn

−τn
dt |ψn(t)|

]−1
)

(B.2)

(2) If there is ε1 such that Anτn�nε1 eventually in n, then Assump-
tion (ii) of the proposition is satisfied whenever δnτn�nε2 with a constant
ε2>0.

(3) The choice δn = An (if available) gives an upper-bound on the
probabilities in the regime of the central limit theorem. On the other hand,
δn= const corresponds to the regime of the local limit theorem. However,
for the latter choice it can be difficult to check the assumptions, and that
is why one has to allow for a sufficient scaling of δn, see Part (2) of this
remark.

(4) Much more information about the distribution of the random
variables Xn would be needed in order to get any lower bounds on the
probabilities (except for the case τn = ∞ in which a full local limit theo-
rem can be proven). This is a hard problem that we do not address here.

Proof. Let sequences (An), (τn), (δn) be given such that the assump-
tion of the proposition is true and take an arbitrary positive function h∈
C∞(R) for which (i) h(x)= 0 for any x �∈ (−ε, ε) and (ii)

∫ 1
−1 dx h(x)= 1.

Using the notation Gn for the distribution function of Xn, we consider its
“regularized version” Ḡn defined by the Lebesgue density

dḠn(x)

dx
=
∫ ∞

−∞
dGn(y)hn(x−y) (B.3)

where hn(x) := 1
δn
h( x
δn
). Obviously, dḠn

dx
∈C∞(R) and it can be expressed

by the Fourier integral as follows:
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dḠn(x)

dx
= 1

2π

∫ ∞

−∞
dt e−itxψn(t)

∫ ∞

−∞
dy eityhn(y)

= 1
2π

∫ ∞

−∞
dt e−itxψn(t) ĥ(tδn) (B.4)

where ĥ(t) := ∫∞
−∞ dx eitxh(x) and we have used that ψn(t) ĥ(tδn) ∈L1(R)

following from Assumption (i) of the proposition and from the bounds
|ψn(t)|, |ĥ(t)|�1. Moreover, if k > 1 is such that Assumption (ii) holds,
then, using the bound |ĥ(t)|� c|t |−k which is true with some constant c
for all t ∈R \ {0}, we obtain the estimate

lim
n→∞ sup

x
An
dGn(x)

dx
� 1

2π
lim n→∞

(
An

∫ τn

−τn
dt |ψn(t)|+

∫

R\[−τn,τn]
dt |ĥ(tδn)|

)

�1+ 1
π

c

k−1
lim
n→∞

An

δknτ
k−1
n

=1 (B.5)

Finally, by using the inequality

P {aδn�Xn�bδn} =
∫ bδn

aδn

dGn(y)

∫ ∞

−∞
dx hn(x−y)

�
∫ (b+ε)δn

(a−ε)δn
dx

∫ bδn

aδn

dGn(y)hn(x−y)

�
∫ (b+ε)δn

(a−ε)δn
dḠn(x) (B.6)

we get

lim
n→∞

An

δn
P {aδn�Xn�bδn}�(b−a+2ε) lim

n→∞ sup
x
An
dGn(x)

dx
�b−a+2ε

(B.7)

and the proposition follows by taking the limit ε→0.
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48. M. Zahradník, An alternate version of Pirogov–Sinai theory, Commun. Math. Phys.

93:559–581 (1984).


